@article{SM_2008_199_12_a2,
author = {S. A. Nazarov},
title = {Concentration of trapped modes in problems of the linearized theory of water waves},
journal = {Sbornik. Mathematics},
pages = {1783--1807},
year = {2008},
volume = {199},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a2/}
}
S. A. Nazarov. Concentration of trapped modes in problems of the linearized theory of water waves. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1783-1807. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a2/
[1] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear water waves, A mathematical approach, Cambridge, Cambridge Univ. Press, 2002 | MR | Zbl
[2] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[3] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45:1–2 (2007), 16–29 | DOI | MR
[4] I. V. Kamotskii, S. A. Nazarov, “Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I”, Sb. Math., 190:1 (1999), 111–141 | DOI | MR | Zbl
[5] I. V. Kamotskii, S. A. Nazarov, “Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II”, Sb. Math., 190:2 (1999), 205–231 | DOI | MR | Zbl
[6] I. V. Kamotski, S. A. Nazarov, “The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain”, J. Math. Sci. (New York), 111:4 (2002), 3657–3666 | DOI | MR | Zbl
[7] S. A. Nazarov, “A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide”, Funct. Anal. Appl., 40:2 (2006), 97–107 | DOI | MR | Zbl
[8] S. A. Nazarov, “Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary”, Comput. Math. Math. Phys., 46:12 (2006), 2164–2175 | DOI | MR
[9] I. V. Kamotskii, S. A. Nazarov, “Elastic waves localized near periodic families of defects”, Dokl. Phys., 44:10 (1999), 715–717 | MR | Zbl
[10] I. V. Kamotskii, S. A. Nazarov, “Exponentially decreasing solutions of diffraction problems on a rigid periodic boundary”, Math. Notes, 73:1–2 (2003), 129–131 | DOI | MR | Zbl
[11] D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[12] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–14 | DOI | MR | Zbl
[13] S. A. Nazarov, “Trapped modes in a cylindrical elastic waveguide with a damping gasket”, Comput. Math. Math. Phys., 48:5 (2008), 816–833 | DOI | MR
[14] M. S. Birman, M. Z. Solomyak, Spectral-theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl
[15] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl | Zbl
[16] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl
[17] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81:1 (1978), 25–82 | DOI | MR | Zbl
[18] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl
[19] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[20] S. A. Nazarov, B. A. Plamenevskii, “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Trudy LMO, 1990:1, 174–211 | MR
[21] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiziki, 13, Izd-vo LGU, L., 1991, 192–244 | MR
[22] S. A. Nazarov, B. A. Plamenevskiǐ, “Selfadjoint elliptic problems with radiation conditions on the edges of the boundary”, St. Petersburg Math. J., 4:3 (1993), 569–594 | MR | Zbl
[23] S. A. Nazarov, “Asymptotics of the solution of a boundary value problem in a thin cylinder with nonsmooth lateral surface”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 183–217 | DOI | MR | Zbl
[24] S. A. Nazarov, “Asymptotic expansions at infinity of solutions of the elasticity theory problem in a layer”, Trans. Moscow Math. Soc., 1999, 1–85 | MR | Zbl
[25] S. A. Nazarov, K. Pileckas, “The asymptotic properties of the solution to the Stokes problem in domains that are layer-like at infinity”, J. Math. Fluid Mech., 1:2 (1999), 131–167 | DOI | MR | Zbl
[26] S. A. Nazarov, G. Thäter, “Neumann problem in a perforated layer (sieve)”, Asymptot. Anal., 44:3–4 (2005), 259–298 | MR | Zbl
[27] S. A. Nazarov, “Asimptotika po malomu parametru resheniya ellipticheskoi po Agranovichu–Vishiku kraevoi zadachi v oblasti s konicheskoi tochkoi”, Problemy matem. analiza, 7 (1979), 146–167 | MR | Zbl
[28] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, Geest Portig, Leipzig, 1959 | MR | MR | Zbl | Zbl
[29] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[30] S. A. Nazarov, K. Pileckas, “Asymptotic conditions at infinity for the Stokes and Navier–Stokes problems in domains with cylindrical outlets to infinity”, Advances in fluid dynamics, Quad. Mat., 4, Seconda Univ. Napoli, Caserta, 1999, 141–243 | MR | Zbl
[31] S. A. Nazarov, “Weighted spaces with detached asymptotics in application to the Navier–Stokes equations”, Advances in mathematical fluid mechanics (Paseky, Czech. Republic, 1999), Adv. Math. Fluid Mech., Springer-Verlag, Berlin, 2000, 159–191 | MR | Zbl
[32] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl | Zbl
[33] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 ; Письмо в редакцию, 63:4 (1998), 640 | DOI | MR | Zbl | MR | Zbl
[34] S. A. Nazarov, “Weighted korn inequalities in paraboloidal domains”, Math. Notes, 62:5 (1997), 629–641 ; “Letter to the editor”, 63:4 (1998), 565 ; исправления к работе, Изв. АН СССР. Сер. матем., 37:3 (1973), 709–710 | DOI | DOI | MR | Zbl
[35] V. G. Maz'ja, B. A. Plamenevskiǐ, “On the asymptotic behavior of solutions of differential equations in Hilbert space”, Math. USSR-Izv., 6:5 (1972), 1067–1116 | DOI | MR | Zbl
[36] B. A. Plamenevskiǐ, “On the asymptotic behavior of solutions of quasielliptic differential equations with operator coefficients”, Math. USSR-Izv., 7:6 (1973), 1327–1370 | DOI | MR | Zbl | Zbl
[37] N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl
[38] O. V. Motygin, “Trapped modes of oscillation of a liquid for surface-piercing bodies in oblique waves”, J. Appl. Math. Mech., 63:2 (1999), 257–264 | DOI | MR | Zbl