Concentration of trapped modes in problems of the linearized theory of water waves
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1783-1807

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of the linearized theory of waves on the surface of an ideal fluid filling a half-space or an infinite 3D-canyon are considered. Families of submerged or surface-piercing bodies parametrized by a characteristic linear size $h>0$ are found that have the following property: for each $d>0$ and each positive integer $N$ there exists $h(d,N)>0$ such that for $h\in(0,h(d,N)]$ the interval $[0,d]$ of the continuous spectrum of the corresponding problem contains at least $N$ eigenvalues corresponding to trapped modes, that is, to solutions of the homogeneous problem that decay exponentially at infinity and possess finite energy. Bibliography: 38 titles.
@article{SM_2008_199_12_a2,
     author = {S. A. Nazarov},
     title = {Concentration of trapped modes in problems of the linearized theory of water waves},
     journal = {Sbornik. Mathematics},
     pages = {1783--1807},
     publisher = {mathdoc},
     volume = {199},
     number = {12},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Concentration of trapped modes in problems of the linearized theory of water waves
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1783
EP  - 1807
VL  - 199
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a2/
LA  - en
ID  - SM_2008_199_12_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Concentration of trapped modes in problems of the linearized theory of water waves
%J Sbornik. Mathematics
%D 2008
%P 1783-1807
%V 199
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_12_a2/
%G en
%F SM_2008_199_12_a2
S. A. Nazarov. Concentration of trapped modes in problems of the linearized theory of water waves. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1783-1807. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a2/