@article{SM_2008_199_12_a0,
author = {A. V. Bayev},
title = {Optimal recovery and finite-dimensional approximation in linear inverse problems},
journal = {Sbornik. Mathematics},
pages = {1735--1750},
year = {2008},
volume = {199},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a0/}
}
A. V. Bayev. Optimal recovery and finite-dimensional approximation in linear inverse problems. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1735-1750. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a0/
[1] A. A. Melkman, C. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16:1 (1979), 87–105 | DOI | MR | Zbl
[2] J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl
[3] V. V. Arestov, “Optimal recovery of operators, and related problems”, Proc. Steklov Inst. Math., 189 (1990), 1–20 | MR | Zbl
[4] C. A. Micchelli, T. J. Rivlin, “Lectures on optimal recovery”, Numerical analysis (Lancaster, 1984), Lecture Notes in Math., 1129, Springer-Verlag, Berlin–Heidelberg, 1985, 21–93 | DOI | MR | Zbl
[5] G. G. Magaril-Il'yaev, K. Yu. Osipenko, V. M. Tikhomirov, “Optimal recovery and extremum theory”, Comput. Methods Funct. Theory, 2:1 (2002), 87–112 | MR | Zbl
[6] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[7] A. V. Baev, “Printsip Lagranzha i konechnomernaya approksimatsiya v zadache optimalnogo obrascheniya lineinykh operatorov”, Vych. metody i programmirovanie, 7:2 (2006), 323–336 ; http://www.srcc.msu.su/num-meth
[8] G. G. Magaril-Il'yaev, K. Yu. Osipenko1, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR | Zbl | Zbl
[9] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl
[10] A. V. Bayev, “The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution”, Comput. Math. Math. Phys., 47:9 (2007), 1452–1463 | DOI | MR
[11] A. V. Bayev, A. G. Yagola, “Optimal recovery in problems of solving linear integral equations with a priori information”, J. Inverse Ill-Posed Probl., 15:6 (2007), 569–586 | DOI | MR | Zbl