Optimal recovery and finite-dimensional approximation in linear inverse problems
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1735-1750

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers applications of the Lagrange principle to optimal recovery in a linear inverse problem with a priori information about its solution and extends previous results of the author on optimal recovery and finite-dimensional approximation. A theorem on general optimal recovery methods for problems in finite- and infinite-dimensional spaces is established and the approximation of a problem in an infinite-dimensional space by problems in finite-dimensional spaces is investigated. Applications of the theory presented are illustrated by examples. Bibliography: 11 titles.
@article{SM_2008_199_12_a0,
     author = {A. V. Bayev},
     title = {Optimal recovery and finite-dimensional approximation in linear inverse problems},
     journal = {Sbornik. Mathematics},
     pages = {1735--1750},
     publisher = {mathdoc},
     volume = {199},
     number = {12},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a0/}
}
TY  - JOUR
AU  - A. V. Bayev
TI  - Optimal recovery and finite-dimensional approximation in linear inverse problems
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1735
EP  - 1750
VL  - 199
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a0/
LA  - en
ID  - SM_2008_199_12_a0
ER  - 
%0 Journal Article
%A A. V. Bayev
%T Optimal recovery and finite-dimensional approximation in linear inverse problems
%J Sbornik. Mathematics
%D 2008
%P 1735-1750
%V 199
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_12_a0/
%G en
%F SM_2008_199_12_a0
A. V. Bayev. Optimal recovery and finite-dimensional approximation in linear inverse problems. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1735-1750. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a0/