On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain
Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1715-1733

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a bounded domain in $\mathbb C^n$ ($n\geqslant1$) with infinitely smooth boundary $\partial D$. We describe necessary and sufficient conditions for the solvability of the Cauchy problem in the Lebesgue space $L^2(D)$ in the domain $D$ for the multi-dimensional Cauchy-Riemann operator $\overline\partial$. As an example we consider the situation where the domain $D$ is the part of a spherical shell $\Omega(r,R)=B(R)\setminus\overline B(r)$, $0$, in $\mathbb C^n$, where $B(R)$ is the ball of radius $R$ with centre at the origin, cut off by a smooth hypersurface $\Gamma$ with the same orientation as $\partial D$. In this case, using the Laurent expansion for harmonic functions in the shell $\Omega(R,r)$ we construct the Carleman formula for recovering a function in the Lebesgue space $L^2(D)$ from its values on $\overline\Gamma$ and the values of $\overline\partial u$ in the domain $D$, if these values belong to $L^2(\Gamma)$ and $L^2(D)$, respectively. Bibliography: 16 titles.
@article{SM_2008_199_11_a5,
     author = {D. P. Fedchenko and A. A. Shlapunov},
     title = {On the {Cauchy} problem for the multi-dimensional {Cauchy-Riemann} operator in the {Lebesgue} space~$L^2$ in a~domain},
     journal = {Sbornik. Mathematics},
     pages = {1715--1733},
     publisher = {mathdoc},
     volume = {199},
     number = {11},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/}
}
TY  - JOUR
AU  - D. P. Fedchenko
AU  - A. A. Shlapunov
TI  - On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1715
EP  - 1733
VL  - 199
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/
LA  - en
ID  - SM_2008_199_11_a5
ER  - 
%0 Journal Article
%A D. P. Fedchenko
%A A. A. Shlapunov
%T On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain
%J Sbornik. Mathematics
%D 2008
%P 1715-1733
%V 199
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/
%G en
%F SM_2008_199_11_a5
D. P. Fedchenko; A. A. Shlapunov. On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1715-1733. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/