On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1715-1733
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $D$ be a bounded domain in $\mathbb C^n$ ($n\geqslant1$) with infinitely smooth boundary $\partial D$.
We describe necessary and sufficient conditions for the solvability of the Cauchy problem in the Lebesgue space $L^2(D)$ in the domain $D$ for the multi-dimensional Cauchy-Riemann operator $\overline\partial$. As an example we consider the situation where the domain $D$ is the part of a spherical shell 
$\Omega(r,R)=B(R)\setminus\overline B(r)$, $0$, in $\mathbb C^n$, where $B(R)$ is the ball of radius $R$ with centre at the origin, cut off by a smooth hypersurface $\Gamma$ with the same orientation as $\partial D$. In this case, using the Laurent expansion for harmonic functions in the shell $\Omega(R,r)$ we construct the Carleman formula for recovering a function in the Lebesgue space $L^2(D)$ from its values on
$\overline\Gamma$ and the values of $\overline\partial u$ in the domain $D$, if these values belong
to $L^2(\Gamma)$ and $L^2(D)$, respectively.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_2008_199_11_a5,
     author = {D. P. Fedchenko and A. A. Shlapunov},
     title = {On the {Cauchy} problem for the multi-dimensional {Cauchy-Riemann} operator in the {Lebesgue} space~$L^2$ in a~domain},
     journal = {Sbornik. Mathematics},
     pages = {1715--1733},
     publisher = {mathdoc},
     volume = {199},
     number = {11},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/}
}
                      
                      
                    TY - JOUR AU - D. P. Fedchenko AU - A. A. Shlapunov TI - On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain JO - Sbornik. Mathematics PY - 2008 SP - 1715 EP - 1733 VL - 199 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/ LA - en ID - SM_2008_199_11_a5 ER -
%0 Journal Article %A D. P. Fedchenko %A A. A. Shlapunov %T On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain %J Sbornik. Mathematics %D 2008 %P 1715-1733 %V 199 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/ %G en %F SM_2008_199_11_a5
D. P. Fedchenko; A. A. Shlapunov. On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space~$L^2$ in a~domain. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1715-1733. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a5/
