The homological degree and Hopf's absolute degree
Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1687-1713 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A cohomological degree theory is constructed for continuous maps of topological manifolds, including manifolds with boundaries, with emphasis on the non-orientable case. Some applications are given, among which the most substantial is an extremely simple definition of Hopf's absolute degree (which coincides with the geometric degree). Bibliography: 29 titles.
@article{SM_2008_199_11_a4,
     author = {E. G. Sklyarenko},
     title = {The homological degree and {Hopf's} absolute degree},
     journal = {Sbornik. Mathematics},
     pages = {1687--1713},
     year = {2008},
     volume = {199},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a4/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - The homological degree and Hopf's absolute degree
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1687
EP  - 1713
VL  - 199
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_11_a4/
LA  - en
ID  - SM_2008_199_11_a4
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T The homological degree and Hopf's absolute degree
%J Sbornik. Mathematics
%D 2008
%P 1687-1713
%V 199
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2008_199_11_a4/
%G en
%F SM_2008_199_11_a4
E. G. Sklyarenko. The homological degree and Hopf's absolute degree. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1687-1713. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a4/

[1] D. B. A. Epstein, “The degree of a map”, Proc. London Math. Soc. (3), 16 (1966), 369–383 | DOI | MR | Zbl

[2] H. Hopf, “Zur Topologie der Abbildungen von Mannigfaltigkeiten”, Math. Ann., 102:1 (1930), 562–623 | DOI | MR | Zbl

[3] P. Olum, “Mappings of manifolds and the notion of degree”, Ann. of Math. (2), 58:3 (1953), 458–480 | DOI | MR | Zbl

[4] R. F. Brown, H. Schirmer, “Nielsen root theory and Hopf degree theory”, Pacific J. Math., 198:1 (2001), 49–80 | MR | Zbl

[5] A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, 200, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl

[6] D. Husemoller, Fibre bundles, McGraw-Hill, New York–London–Sydney, 1966 | MR | Zbl | Zbl

[7] E. G. Sklyarenko, “Two orientations”, Math. Notes, 83:1–2 (2008), 88–96 | DOI | MR

[8] J. W. Milnor, J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1974 | MR | MR | Zbl | Zbl

[9] W. S. Massey, Homology and cohomology theory. An approach based on Alexander–Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, 46, Marcel Dekker, New York–Basel, 1978 | MR | MR | Zbl | Zbl

[10] R. Bott, L. W. Tu, Differential forms in algebraic topology, Grad. Texts in Math., 82, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[11] G. E. Bredon, Teoriya puchkov, Nauka, M., 1988 ; G. E. Bredon, Sheaf theory, McGraw-Hill, New York–Toronto, ON–London, 1967 ; 2d ed.: Grad. Texts in Math., 170, Springer-Verlag, New York, 1997 | MR | Zbl | MR | Zbl | MR | Zbl

[12] E. G. Skljarenko, “On the theory of generalized manifolds”, Math. USSR-Izv., 5:4 (1971), 845–857 | DOI | MR | Zbl

[13] E. G. Sklyarenko, “Homology and cohomology theories of general spaces”, General topology II, Encyclopaedia Math. Sci., 50, Springer-Verlag, Berlin, 1996, 119–246 | MR | MR | Zbl

[14] D. L. Gonçalves, J. Jezierski, “Lefschetz coincidence formula on non-orientable manifolds”, Fund. Math., 153:1 (1997), 1–23 | MR | Zbl

[15] Cohomologie des groupes, suite spectrale, faisceaux, 2e éd., Séminaire Henri Cartan, 3 (1950/51), Ecole Normale Supérieure, Paris, 1955 | MR | Zbl

[16] E. G. Sklyarenko, “Flabby sheaves of chains for singular homology”, Math. Notes, 65:3 (1999), 331–334 | DOI | MR | Zbl

[17] Topologie algébrique, Séminaire Henri Cartan, 1 (1948/49), Ecole Normale Supérieure, Paris, 1949 | MR | Zbl

[18] N. Bourbaki, Éléments de mathématique. Premiére partie. (Fascicule II.) Livre III: Topologie générale. Ch. 1: Structures topologiques. Ch. 2: Structures uniformes, Hermann, Paris, 1961 | MR | MR | Zbl | Zbl

[19] A. È. Harlap, “Local homology and cohomology, homology dimension and generalized manifolds”, Math. USSR-Sb., 25:3 (1975), 323–349 | DOI | MR | Zbl | Zbl

[20] D. Rote, “Perifericheskaya kogomologicheskaya lokalnaya svyaznost”, Fund. Math., 116:1 (1983), 53–66 | MR

[21] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Hermann, Paris, 1955 | MR | MR | Zbl

[22] R. B. S. Brooks, R. F. Brown, H. Schirmer, “The absolute degree and the Nielsen root number of compositions and Cartesian products of maps”, Topology Appl., 116:1 (2001), 5–27 | DOI | MR | Zbl

[23] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl

[24] J. W. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, Charlottesville, VA, 1965 ; Dzh. Milnor, A. Uolles, Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR | Zbl | MR | Zbl

[25] J. T. Schwartz, Differential geometry and topology, Gordon and Breach, New York–London–Paris, 1968 | Zbl | Zbl

[26] M. W. Hirsch, Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | MR | Zbl | Zbl

[27] E. G. Sklyarenko, “Homology theory and the exactness axiom”, Russian Math. Surveys, 24:5 (1969), 91–142 | DOI | MR | Zbl

[28] E. H. Spanier, Algebraic topology, McGraw-Hill, New York–Toronto, ON–London, 1966 | MR | MR | Zbl | Zbl

[29] E. G. Sklyarenko, “On the nature of homological products and duality”, Russian Math. Surveys, 49:1 (1994), 151–215 | DOI | MR | Zbl