Elliptic and weakly coercive systems of operators in Sobolev spaces
Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1649-1686

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that an elliptic system $\{P_j(x,D)\}_1^N$ of order $l$ is weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^n)$, that is, all differential monomials of order $\leqslant l-1$ on $C_0^\infty(\mathbb R^n)$-functions are subordinated to this system in the $L^\infty$-norm. Conditions for the converse result are found and other properties of weakly coercive systems are investigated. An analogue of the de Leeuw-Mirkil theorem is obtained for operators with variable coefficients: it is shown that an operator $P(x,D)$ of $n\geqslant 3$ variables with constant principal part is weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^n)$ if and only if it is elliptic. A similar result is obtained for systems $\{P_j(D)\}_1^N$ with constant coefficients under the condition $n\geqslant 2N+1$ and with several restrictions on the symbols $P_j(\xi)$. A complete description of differential polynomials of two variables which are weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^2)$ is given. Wide classes of systems with constant coefficients which are weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^n)$, but non-elliptic are constructed. Bibliography: 32 titles.
@article{SM_2008_199_11_a3,
     author = {D. V. Lymanskyi and M. M. Malamud},
     title = {Elliptic and weakly coercive systems of operators in {Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1649--1686},
     publisher = {mathdoc},
     volume = {199},
     number = {11},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a3/}
}
TY  - JOUR
AU  - D. V. Lymanskyi
AU  - M. M. Malamud
TI  - Elliptic and weakly coercive systems of operators in Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1649
EP  - 1686
VL  - 199
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_11_a3/
LA  - en
ID  - SM_2008_199_11_a3
ER  - 
%0 Journal Article
%A D. V. Lymanskyi
%A M. M. Malamud
%T Elliptic and weakly coercive systems of operators in Sobolev spaces
%J Sbornik. Mathematics
%D 2008
%P 1649-1686
%V 199
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_11_a3/
%G en
%F SM_2008_199_11_a3
D. V. Lymanskyi; M. M. Malamud. Elliptic and weakly coercive systems of operators in Sobolev spaces. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1649-1686. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a3/