@article{SM_2008_199_11_a2,
author = {B. K. Kwa\'sniewski and A. V. Lebedev},
title = {Reversible extensions of irreversible dynamical systems: the $C^*$-method},
journal = {Sbornik. Mathematics},
pages = {1621--1648},
year = {2008},
volume = {199},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a2/}
}
B. K. Kwaśniewski; A. V. Lebedev. Reversible extensions of irreversible dynamical systems: the $C^*$-method. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1621-1648. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a2/
[1] A. V. Lebedev, A. Odzijewicz, “Extensions of $C^*$-algebras by partial isometries”, Sb. Math., 195:7 (2004), 951–982 | DOI | MR | Zbl
[2] S. V. Popovych, T. Yu. Maistrenko, “$C^*$-algebras associated with ${\mathscr F}_{2^n}$ unimodal dynamical systems”, Ukrainian Math. J., 53:7 (2001), 1106–1115 | DOI | MR | Zbl
[3] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, Crossed product of a $C^*$-algebra by an endomorphism, coefficient algebras and transfer operators, arXiv: math/0502415
[4] B. K. Kwaśniewski, “Covariance algebra of a partial dynamical system”, Cent. Eur. J. Math., 3:4 (2005), 718–765 | DOI | MR | Zbl
[5] B. K. Kwaśniewski, A. V. Lebedev, Crossed product by an arbitrary endomorphism, arXiv: math/0703801
[6] B. K. Kwaśniewski, A. V. Lebedev, Maximal ideal space of a commutative coefficient algebra, arXiv: math/0311416
[7] S. Lo, Operatory vzveshennogo sdviga v nekotorykh banakhovykh prostranstvakh funktsii, Dis. ... kand. fiz.-matem. nauk, Minsk, 1981
[8] J. Dixmier, Les $C^*$-algèbres et leurs représentations, Cahiers scientifiques, 29, Gauthier-Villars, Paris, 1969 | MR | MR | Zbl | Zbl
[9] B. K. Kwaśniewski, On systems generalizing inverse limits for partial mappings, 09, Institute of Mathematics, Bialystok University, 2007
[10] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley, Redwood City, CA, 1989 | MR | Zbl
[11] M. Brin, G. Stuck, Introduction to dynamical systems, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[12] J. E. Anderson, I. F. Putnam, “Topological invariants for substitution tilings and their associated $C^*$-algebras”, Ergodic Theory Dynam. Systems, 18:3 (1998), 509–537 | DOI | MR | Zbl
[13] M. Barge, J. Jacktlich, G. Vago, “Homeomorphisms of one-dimensional inverse limits with applications to substitution tilings, unstable manifolds, and tent maps”, Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), Contemp. Math., 246, Amer. Math. Soc., Providence, RI, 1999, 1–15 | MR | Zbl
[14] M. Barge, W. T. Ingram, “Inverse limits on $[0,1]$ using logistic bonding maps”, Topology Appl., 72:2 (1996), 159–172 | DOI | MR | Zbl
[15] J. T. Rogers, jr., “On mapping indecomposable continua onto certain chainable indecomposable continua”, Proc. Amer. Math. Soc., 25:2 (1970), 449–456 | DOI | MR | Zbl
[16] W. Th. Watkins, “Homeomorphic classification of certain inverse limit spaces with open bonding maps”, Pacific J. Math., 103:2 (1982), 589–601 | MR | Zbl
[17] R. F. Williams, “One-dimensional non-wandering sets”, Topology, 6:4 (1967), 473–487 | DOI | MR | Zbl
[18] I. Yi, “Canonical symbolic dynamics for one-dimensional generalized solenoids”, Trans. Amer. Math. Soc., 353:9 (2001), 3741–3767 | DOI | MR | Zbl
[19] B. K. Kwaśniewski, “Inverse limit systems associated with $\mathscr F_{2^n}$ zero Schwarzian unimodal maps”, Bull. Soc. Sci. Lett. Lódz Sér. Rech. Déform., 55 (2005), 83–109 | MR | Zbl
[20] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, MIT Press, Cambridge, MA–London, 1971 | MR | MR | Zbl | Zbl