Reversible extensions of irreversible dynamical systems: the $C^*$-method
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1621-1648
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A construction of a reversible extension of irreversible dynamical systems is presented. It is based on calculating the maximal ideal spaces of the $C^*$-algebras generated by these systems and the corresponding reversible extensions of endomorphisms. Connections between the objects that arise and dynamical
systems of Smale horseshoe and other types are revealed.
Bibliography: 20 titles.
			
            
            
            
          
        
      @article{SM_2008_199_11_a2,
     author = {B. K. Kwa\'sniewski and A. V. Lebedev},
     title = {Reversible extensions of irreversible dynamical systems: the $C^*$-method},
     journal = {Sbornik. Mathematics},
     pages = {1621--1648},
     publisher = {mathdoc},
     volume = {199},
     number = {11},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a2/}
}
                      
                      
                    TY - JOUR AU - B. K. Kwaśniewski AU - A. V. Lebedev TI - Reversible extensions of irreversible dynamical systems: the $C^*$-method JO - Sbornik. Mathematics PY - 2008 SP - 1621 EP - 1648 VL - 199 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_11_a2/ LA - en ID - SM_2008_199_11_a2 ER -
B. K. Kwaśniewski; A. V. Lebedev. Reversible extensions of irreversible dynamical systems: the $C^*$-method. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1621-1648. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a2/