@article{SM_2008_199_11_a1,
author = {V. G. Kanovei and T. Linton and V. A. Uspenskii},
title = {Lebesgue measure and gambling},
journal = {Sbornik. Mathematics},
pages = {1597--1619},
year = {2008},
volume = {199},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a1/}
}
V. G. Kanovei; T. Linton; V. A. Uspenskii. Lebesgue measure and gambling. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1597-1619. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a1/
[1] D. Kannan, An introduction to stochastic processes, North Holland Series in Probability and Applied Math., North-Holland, New York–Oxford, 1979 | MR | Zbl
[2] A. A. Muchnik, A. L. Semenov, V. A. Uspensky, “Mathematical metaphysics of randomness”, Theoret. Comput. Sci., 207:2 (1998), 263–317 | DOI | MR | Zbl
[3] V. A. Uspenskii, “Chetyre algoritmicheskikh litsa sluchainosti”, Matem. prosv., seriya 3, 10, MTsNMO, M., 2006, 71–108
[4] J. H. Lutz, “Resource-bounded measure”, Proceedings of the Thirteenth Annual IEEE Conference on Computational Complexity (Buffalo, NY, USA, 1998), IEEE Computer Society Press, Los Alamitos, CA, 1998, 236–248 | MR | Zbl
[5] V. Kanovei, M. Reeken, “Loeb measure from the point of view of a coin flipping game”, Math. Logic Quart., 42:1 (1996), 19–26 | DOI | MR | Zbl
[6] W. Rudin, Real and complex analysis, McGraw–Hill, New York–Düsseldorf–Johannesburg, 1974 | MR | Zbl
[7] J. Mycielski, S. Swierczkowski, “On the Lebesgue measurability and the axiom of determinateness”, Fund. Math., 54 (1964), 67–71 | MR | Zbl
[8] Y. N. Moschovakis, Descriptive set theory, Stud. Logic Found. Math., 100, North Holland, Amsterdam, New York, Oxford, 1980 | MR | Zbl
[9] V. G. Kanovei, Aksioma vybora i aksioma determinirovannosti, Nauka, M., 1984 | MR | Zbl
[10] Th. Jech, Set theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003 | MR | Zbl
[11] D. A. Martin, “Borel determinacy”, Ann. of Math. (2), 102:2 (1975), 363–371 | DOI | MR | Zbl