Lebesgue measure and gambling
Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1597-1619 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lebesgue measure of point sets is characterized in terms of the existence of various strategies in a certain coin-flipping game. ‘Rational’ and ‘discrete’ modifications of this game are investigated. We prove that if one of the players has a winning strategy in a game of this type depending on a given set $P\subseteq[0,1]$, then this set is measurable. Bibliography: 11 titles.
@article{SM_2008_199_11_a1,
     author = {V. G. Kanovei and T. Linton and V. A. Uspenskii},
     title = {Lebesgue measure and gambling},
     journal = {Sbornik. Mathematics},
     pages = {1597--1619},
     year = {2008},
     volume = {199},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_11_a1/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - T. Linton
AU  - V. A. Uspenskii
TI  - Lebesgue measure and gambling
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1597
EP  - 1619
VL  - 199
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_11_a1/
LA  - en
ID  - SM_2008_199_11_a1
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A T. Linton
%A V. A. Uspenskii
%T Lebesgue measure and gambling
%J Sbornik. Mathematics
%D 2008
%P 1597-1619
%V 199
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2008_199_11_a1/
%G en
%F SM_2008_199_11_a1
V. G. Kanovei; T. Linton; V. A. Uspenskii. Lebesgue measure and gambling. Sbornik. Mathematics, Tome 199 (2008) no. 11, pp. 1597-1619. http://geodesic.mathdoc.fr/item/SM_2008_199_11_a1/

[1] D. Kannan, An introduction to stochastic processes, North Holland Series in Probability and Applied Math., North-Holland, New York–Oxford, 1979 | MR | Zbl

[2] A. A. Muchnik, A. L. Semenov, V. A. Uspensky, “Mathematical metaphysics of randomness”, Theoret. Comput. Sci., 207:2 (1998), 263–317 | DOI | MR | Zbl

[3] V. A. Uspenskii, “Chetyre algoritmicheskikh litsa sluchainosti”, Matem. prosv., seriya 3, 10, MTsNMO, M., 2006, 71–108

[4] J. H. Lutz, “Resource-bounded measure”, Proceedings of the Thirteenth Annual IEEE Conference on Computational Complexity (Buffalo, NY, USA, 1998), IEEE Computer Society Press, Los Alamitos, CA, 1998, 236–248 | MR | Zbl

[5] V. Kanovei, M. Reeken, “Loeb measure from the point of view of a coin flipping game”, Math. Logic Quart., 42:1 (1996), 19–26 | DOI | MR | Zbl

[6] W. Rudin, Real and complex analysis, McGraw–Hill, New York–Düsseldorf–Johannesburg, 1974 | MR | Zbl

[7] J. Mycielski, S. Swierczkowski, “On the Lebesgue measurability and the axiom of determinateness”, Fund. Math., 54 (1964), 67–71 | MR | Zbl

[8] Y. N. Moschovakis, Descriptive set theory, Stud. Logic Found. Math., 100, North Holland, Amsterdam, New York, Oxford, 1980 | MR | Zbl

[9] V. G. Kanovei, Aksioma vybora i aksioma determinirovannosti, Nauka, M., 1984 | MR | Zbl

[10] Th. Jech, Set theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003 | MR | Zbl

[11] D. A. Martin, “Borel determinacy”, Ann. of Math. (2), 102:2 (1975), 363–371 | DOI | MR | Zbl