Local formulae for characteristic
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1547-1577

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a principal $\mathrm{GL}_n$-bundle over a smooth compact manifold $X$ given by a finite atlas $\mathscr U=\{U_\alpha\}$ with transition functions $g_{\alpha\beta}$. A method is described for constructing the cocycles corresponding to the Chern classes of the bundle $P$ in the Čech complex with coefficients in the sheaf of de Rham forms on the manifold associated with the atlas $\mathscr U$. It is proved that for every rational characteristic class $c$ of the bundle $P$ there exists a cocycle in the aforementioned complex depending only on the gluing functions and corresponding to the class $c$ under the canonical identification of the cohomologies of the complex and the de Rham cohomologies of the manifold $X$ (a simple algorithm is given that enables one to calculate this cocycle explicitly). One of the key ideas leading to these results is the idea of using the notion of a twisting cochain for constructing the cocycles. Bibliography: 14 titles.
@article{SM_2008_199_10_a6,
     author = {G. I. Sharygin},
     title = {Local formulae for characteristic},
     journal = {Sbornik. Mathematics},
     pages = {1547--1577},
     publisher = {mathdoc},
     volume = {199},
     number = {10},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/}
}
TY  - JOUR
AU  - G. I. Sharygin
TI  - Local formulae for characteristic
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1547
EP  - 1577
VL  - 199
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/
LA  - en
ID  - SM_2008_199_10_a6
ER  - 
%0 Journal Article
%A G. I. Sharygin
%T Local formulae for characteristic
%J Sbornik. Mathematics
%D 2008
%P 1547-1577
%V 199
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/
%G en
%F SM_2008_199_10_a6
G. I. Sharygin. Local formulae for characteristic. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1547-1577. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/