Local formulae for characteristic
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1547-1577 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $P$ be a principal $\mathrm{GL}_n$-bundle over a smooth compact manifold $X$ given by a finite atlas $\mathscr U=\{U_\alpha\}$ with transition functions $g_{\alpha\beta}$. A method is described for constructing the cocycles corresponding to the Chern classes of the bundle $P$ in the Čech complex with coefficients in the sheaf of de Rham forms on the manifold associated with the atlas $\mathscr U$. It is proved that for every rational characteristic class $c$ of the bundle $P$ there exists a cocycle in the aforementioned complex depending only on the gluing functions and corresponding to the class $c$ under the canonical identification of the cohomologies of the complex and the de Rham cohomologies of the manifold $X$ (a simple algorithm is given that enables one to calculate this cocycle explicitly). One of the key ideas leading to these results is the idea of using the notion of a twisting cochain for constructing the cocycles. Bibliography: 14 titles.
@article{SM_2008_199_10_a6,
     author = {G. I. Sharygin},
     title = {Local formulae for characteristic},
     journal = {Sbornik. Mathematics},
     pages = {1547--1577},
     year = {2008},
     volume = {199},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/}
}
TY  - JOUR
AU  - G. I. Sharygin
TI  - Local formulae for characteristic
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1547
EP  - 1577
VL  - 199
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/
LA  - en
ID  - SM_2008_199_10_a6
ER  - 
%0 Journal Article
%A G. I. Sharygin
%T Local formulae for characteristic
%J Sbornik. Mathematics
%D 2008
%P 1547-1577
%V 199
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/
%G en
%F SM_2008_199_10_a6
G. I. Sharygin. Local formulae for characteristic. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1547-1577. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a6/

[1] M. Kapranov, “Rozansky–Witten invariants via Atiyah classes”, Compositio Math., 115:1 (1999), 71–113 | DOI | MR | Zbl

[2] R. Bott, “Lectures on characteristic classes and foliations”, Lectures on algebraic and differential topology, Second Latin American School in Math. (Mexico City, 1971), Lecture Notes in Math., 279, Springer-Verlag, Berlin–Heidelberg, 1972, 1–94 | DOI | MR | Zbl

[3] R. Bott, L. W. Tu, Differential forms in algebraic topology, Grad. Texts in Math., 82, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[4] R. Bott, “On the Chern–Weil homomorphism and the continuous cohomology of Lie-groups”, Advances in Math., 11:3 (1973), 289–303 | DOI | MR | Zbl

[5] D. Toledo, Y. L. L. Tong, “A parametrix for $\overline\partial$ and Riemann–Roch in Čech theory”, Topology, 15:4 (1976), 273–301 | DOI | MR | Zbl

[6] N. R. O'Brian, D. Toledo, Y. L. L. Tong, “The trace map and characteristic classes for coherent sheaves”, Amer. J. Math., 103:2 (1981), 225–252 | DOI | MR | Zbl

[7] E. Braun, “Skreschennye tenzornye proizvedeniya”, Matematika. Sb. per., 6:1 (1962), 33–59

[8] W. Shih, “Homologie des espaces fibrés”, Inst. Hautes Études Sci. Publ. Math., 13 (1962), 93–176 | MR | Zbl

[9] V. A. Smirnov, “$D$ functor for tensor cross products”, Math. Notes, 20:4 (1976), 819–823 | DOI | MR | Zbl | Zbl

[10] A. L. Onishchik, Topology of transitive transformation groups, Barth, Leipzig, 1994 | MR | MR | Zbl | Zbl

[11] M. E. Sweedler, Hopf algebras, Math. Lecture Note Ser., Benjamin, New York, 1969 | MR | Zbl

[12] V. A. Smirnov, Simplicial and operad methods in algebraic topology, Transl. Math. Monogr., 198, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[13] J. P. May, Simplicial methods in algebraic topology, U. Chicago, 1967

[14] J. L. Dupont, “Simplicial de Rham cohomology and characteristic classes of flat bundles”, Topology, 15:3 (1976), 233–245 | DOI | MR | Zbl