Eigenfunctions of the Sturm-Liouville problem on a star graph
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1523-1545 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the Sturm-Liouville problem on a star graph and is concerned with the structure and properties of the eigenvalues and eigenfunctions of this problem. Particular emphasis has been placed on the completeness of the system of eigenfunctions in the space of square-integrable functions and on the expansion of a given function as a generalized Fourier series in terms of this system. Such problems have great value in the study of boundary-value problems for linear partial differential equations on a graph by the Fourier method, and arise, for example, in the model of oscillatory processes in an elastic mast with supporting elastic guys. Bibiliography: 8 titles.
@article{SM_2008_199_10_a5,
     author = {V. V. Provotorov},
     title = {Eigenfunctions of the {Sturm-Liouville} problem on a~star graph},
     journal = {Sbornik. Mathematics},
     pages = {1523--1545},
     year = {2008},
     volume = {199},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a5/}
}
TY  - JOUR
AU  - V. V. Provotorov
TI  - Eigenfunctions of the Sturm-Liouville problem on a star graph
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1523
EP  - 1545
VL  - 199
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a5/
LA  - en
ID  - SM_2008_199_10_a5
ER  - 
%0 Journal Article
%A V. V. Provotorov
%T Eigenfunctions of the Sturm-Liouville problem on a star graph
%J Sbornik. Mathematics
%D 2008
%P 1523-1545
%V 199
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a5/
%G en
%F SM_2008_199_10_a5
V. V. Provotorov. Eigenfunctions of the Sturm-Liouville problem on a star graph. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1523-1545. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a5/

[1] M. G. Zavgorodniǐ, “Spectral completeness of the root functions of a boundary value problem on a graph”, Russian Acad. Sci. Dokl. Math., 49:2 (1994), 298–302 | MR | Zbl

[2] V. V. Provotorov, “Matematicheskoe modelirovanie kolebatelnykh protsessov podderzhivayuschikh rastyazhek uprugoi machty”, Vestn. Voron. un-ta. Ser. Sist. analiz i inform. tekhn., 2006, no. 2, 28–35

[3] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[4] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946 | MR | MR | Zbl | Zbl

[5] L. Ya. Tslaf, Variatsionnoe ischislenie i integralnye uravneniya, Nauka, M., 1970 | MR | Zbl

[6] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[7] B. Chabat, Introduction à l'analyse complexe. Tome 1. Fonctions d'une variable, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | Zbl

[8] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii: Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1979 | MR | Zbl