Multidimensional versions of Poincar\'e's theorem for difference equations
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1505-1521

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization to several variables of the classical Poincaré theorem on the asymptotic behaviour of solutions of a linear difference equation is presented. Two versions are considered: 1) general solutions of a system of $n$ equations with respect to a function of $n$ variables and 2) special solutions of a scalar equation. The classical Poincaré theorem presumes that all the zeros of the limiting symbol have different absolute values. Using the notion of an amoeba of an algebraic hypersurface, a multidimensional analogue of this property is formulated; it ensures nice asymptotic behaviour of special solutions of the corresponding difference equation. Bibliography: 20 titles.
@article{SM_2008_199_10_a4,
     author = {E. K. Leinartas and M. Passare and A. K. Tsikh},
     title = {Multidimensional versions of {Poincar\'e's} theorem for difference equations},
     journal = {Sbornik. Mathematics},
     pages = {1505--1521},
     publisher = {mathdoc},
     volume = {199},
     number = {10},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/}
}
TY  - JOUR
AU  - E. K. Leinartas
AU  - M. Passare
AU  - A. K. Tsikh
TI  - Multidimensional versions of Poincar\'e's theorem for difference equations
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1505
EP  - 1521
VL  - 199
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/
LA  - en
ID  - SM_2008_199_10_a4
ER  - 
%0 Journal Article
%A E. K. Leinartas
%A M. Passare
%A A. K. Tsikh
%T Multidimensional versions of Poincar\'e's theorem for difference equations
%J Sbornik. Mathematics
%D 2008
%P 1505-1521
%V 199
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/
%G en
%F SM_2008_199_10_a4
E. K. Leinartas; M. Passare; A. K. Tsikh. Multidimensional versions of Poincar\'e's theorem for difference equations. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1505-1521. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/