Multidimensional versions of Poincaré's theorem for difference equations
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1505-1521 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization to several variables of the classical Poincaré theorem on the asymptotic behaviour of solutions of a linear difference equation is presented. Two versions are considered: 1) general solutions of a system of $n$ equations with respect to a function of $n$ variables and 2) special solutions of a scalar equation. The classical Poincaré theorem presumes that all the zeros of the limiting symbol have different absolute values. Using the notion of an amoeba of an algebraic hypersurface, a multidimensional analogue of this property is formulated; it ensures nice asymptotic behaviour of special solutions of the corresponding difference equation. Bibliography: 20 titles.
@article{SM_2008_199_10_a4,
     author = {E. K. Leinartas and M. Passare and A. K. Tsikh},
     title = {Multidimensional versions of {Poincar\'e's} theorem for difference equations},
     journal = {Sbornik. Mathematics},
     pages = {1505--1521},
     year = {2008},
     volume = {199},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/}
}
TY  - JOUR
AU  - E. K. Leinartas
AU  - M. Passare
AU  - A. K. Tsikh
TI  - Multidimensional versions of Poincaré's theorem for difference equations
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1505
EP  - 1521
VL  - 199
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/
LA  - en
ID  - SM_2008_199_10_a4
ER  - 
%0 Journal Article
%A E. K. Leinartas
%A M. Passare
%A A. K. Tsikh
%T Multidimensional versions of Poincaré's theorem for difference equations
%J Sbornik. Mathematics
%D 2008
%P 1505-1521
%V 199
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/
%G en
%F SM_2008_199_10_a4
E. K. Leinartas; M. Passare; A. K. Tsikh. Multidimensional versions of Poincaré's theorem for difference equations. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1505-1521. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/

[1] H. Poincaré, “Sur les Equations Linéaires aux Différentielles Ordinaires et aux Différences Finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl

[2] V. I. Buslaev, “Poincare's theorem and its applications to the convergence of continued fractions”, Sb. Math., 189:12, 1749–1764 | DOI | MR | Zbl

[3] J. Horn, “Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34:4 (1889), 544–600 | DOI | MR | Zbl

[4] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[5] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151:1 (2000), 45–70 | DOI | MR | Zbl

[6] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl

[7] G. Mikhalkin, H. Rullgård, “Amoebas of maximal area”, Internat. Math. Res. Notices, 2001, no. 9, 441–451 | DOI | MR | Zbl

[8] M. M. Kapranov, “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:1 (1991), 277–285 | DOI | MR | Zbl

[9] M. Passare, A. Tsikh, “Amoebas: their spines and their contours”, Idempotent mathematics and mathematical physics, Proceedings of the international workshop (Vienna, Austria, 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | MR | Zbl

[10] V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps, vol. I: The classification of critical points, caustics and wave fronts, Monogr. Math., 82, Birkhäuser, Boston, MA, 1985 ; V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, t. 1: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR | Zbl | MR | Zbl

[11] O. Perron, “Über die Poincarésche lineare Differenzengleichung”, J. Reine Angew. Math., 137 (1909), 6–64 | Zbl

[12] A. O. Gel'fond, Differenzenrechnung, Hochschulbucher fur Mathematik, 41, VEB, Berlin, 1958 ; A. O. Gelfond, Ischislenie konechnykh raznostei, M.–L., GITTL, 1952 | MR | Zbl | MR | Zbl

[13] V. M. Trutnev, A. K. Tsikh, “On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions”, Izv. Math., 59:5, 1083–1102 | DOI | MR | Zbl

[14] J.-E. Björk, “Residues and $\mathscr D$-modules”, The legacy of Niels Henrik Abel, Papers from the Abel bicentennial conference (University of Oslo, Oslo, Norway, 2002), Springer-Verbag, Berlin–Heidelberg, 2004, 605–651 | MR | Zbl

[15] G. Henkin, M. Passare, “Abelian differentials on singular varieties and variations on a theorem of Lie–Griffiths”, Invent. Math., 135:2 (1999), 297–328 | DOI | MR | Zbl

[16] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[17] R. J. Duffin, D. H. Shaffer, “Asymptotic expansion of double Fourier transforms”, Duke Math. J., 27:4 (1960), 581–596 | DOI | MR | Zbl

[18] A. K. Tsikh, “Conditions for absolute convergence of the taylor coefficient series of a meromorphic function of two variables”, Math. USSR-Sb., 74:2 (1993), 337–360 | DOI | MR | Zbl | Zbl

[19] E. L. Leinartas, “Multiple Laurent series and difference equations”, Siberian Math. J., 45:2 (2004), 321–326 | DOI | MR | Zbl

[20] J. Leray, “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III)”, Bull. Soc. Math. France, 87 (1959), 81–180 | MR | Zbl