Multidimensional versions of Poincar\'e's theorem for difference equations
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1505-1521
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization to several variables of the classical Poincaré theorem on the asymptotic behaviour of
solutions of a linear difference equation is presented. Two versions are considered: 1) general solutions of
a system of $n$ equations with respect to a function of $n$ variables and 2) special solutions of
a scalar equation. The classical Poincaré theorem presumes that all the zeros of the limiting symbol have different absolute values. Using the notion of an amoeba of an algebraic hypersurface, a multidimensional
analogue of this property is formulated; it ensures nice asymptotic behaviour of special solutions
of the corresponding difference equation.
Bibliography: 20 titles.
@article{SM_2008_199_10_a4,
author = {E. K. Leinartas and M. Passare and A. K. Tsikh},
title = {Multidimensional versions of {Poincar\'e's} theorem for difference equations},
journal = {Sbornik. Mathematics},
pages = {1505--1521},
publisher = {mathdoc},
volume = {199},
number = {10},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/}
}
TY - JOUR AU - E. K. Leinartas AU - M. Passare AU - A. K. Tsikh TI - Multidimensional versions of Poincar\'e's theorem for difference equations JO - Sbornik. Mathematics PY - 2008 SP - 1505 EP - 1521 VL - 199 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/ LA - en ID - SM_2008_199_10_a4 ER -
E. K. Leinartas; M. Passare; A. K. Tsikh. Multidimensional versions of Poincar\'e's theorem for difference equations. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1505-1521. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a4/