Natural differential operations on manifolds: an algebraic
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1481-1503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between $k$-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles $\mathscr{V},\mathscr{W}\to M$ all the natural differential operations $D\colon\Gamma(\mathscr{V})\to\Gamma(\mathscr{W})$ of degree at most $d$ can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds. Bibliography: 21 titles.
@article{SM_2008_199_10_a3,
     author = {P. I. Katsylo and D. A. Timashev},
     title = {Natural differential operations on manifolds: an algebraic},
     journal = {Sbornik. Mathematics},
     pages = {1481--1503},
     year = {2008},
     volume = {199},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a3/}
}
TY  - JOUR
AU  - P. I. Katsylo
AU  - D. A. Timashev
TI  - Natural differential operations on manifolds: an algebraic
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1481
EP  - 1503
VL  - 199
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a3/
LA  - en
ID  - SM_2008_199_10_a3
ER  - 
%0 Journal Article
%A P. I. Katsylo
%A D. A. Timashev
%T Natural differential operations on manifolds: an algebraic
%J Sbornik. Mathematics
%D 2008
%P 1481-1503
%V 199
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a3/
%G en
%F SM_2008_199_10_a3
P. I. Katsylo; D. A. Timashev. Natural differential operations on manifolds: an algebraic. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1481-1503. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a3/

[1] P. B. Gilkey, “Curvature and the eigenvalues of the Laplacian for elliptic complexes”, Advances in Math., 10:3 (1973), 344–382 | DOI | MR | Zbl

[2] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[3] M. Atiyah, R. Bott, V. K. Patodi, “On the heat equation and the index theorem”, Invent. Math., 19:4 (1973), 279–330 | DOI | MR | Zbl

[4] P. B. Gilkey, Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Math. Lecture Ser., 11, Publish or Perish, Wilmington, DE, 1984 | MR | Zbl

[5] I. M. Gel'fand, D. A. Kazhdan, “Some problems of differential geometry and the calculation of cohomologies of Lie algebras of vector fields”, Soviet Math. Dokl., 12 (1971), 1367–1370 | MR | Zbl

[6] P. I. Katsylo, “On curvatures of sections of tensor bundles”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 129–140 | MR | Zbl

[7] I. Kolář, P. W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 ; I. Kolar, P. V. Michor, Ya. Slovak, Estestvennye operatsii v differentsialnoi geometrii, Timpani, Kiev, 2001 | MR | Zbl | Zbl

[8] A. N. Rudakov, “Irreducible representations of infinite-dimensional Lie algebras of types $\mathbf S$ and $\mathbf H$”, Math. USSR-Izv., 9:3 (1975), 465–480 | DOI | MR | Zbl | Zbl

[9] D. V. Alekseevskij, A. M. Vinogradov, V. V. Lychagin, “Basic ideas and concepts of differential geometry”, Geometry I, Encyclopaedia Math. Sci., 28, Springer-Verlag, Berlin, 1991, 1–264 | MR | Zbl | Zbl

[10] R. S. Palais, Ch.-L. Terng, “Natural bundles have finite order”, Topology, 16:3 (1977), 271–277 | DOI | MR | Zbl

[11] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[12] V. L. Popov, Eh. B. Vinberg, “Invariant theory”, Algebraic geometry. IV: Linear algebraic groups, invariant theory, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | MR | MR | Zbl | Zbl

[13] A. A. Kirillov, “Invariant operators on geometric quantities”, J. Math. Sci., 18:1 (1982), 1–21 | DOI | MR | Zbl | Zbl

[14] E. Yu. Smirnov, O estestvennykh differentsialnykh operatsiyakh, diplomnaya rabota, MGU, M., 2004

[15] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Deformation theory and quantization, I, II”, Ann. Physics, 111:1 (1978), 61–110 ; 111–151 | DOI | MR | Zbl | DOI | MR | Zbl

[16] M. de Wilde, P. B. A. Lecomte, “Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds”, Lett. Math. Phys., 7:6 (1983), 487–496 | DOI | MR | Zbl

[17] B. V. Fedosov, “A simple geometrical construction of deformation quantization”, J. Differential Geom., 40:2 (1994), 213–238 | MR | Zbl

[18] C. Emmrich, A. Weinstein, “The differential geometry of Fedosov's quantization”, Lie theory and geometry, Progr. Math., 123, Birkhäuser, Boston, MA, 1994, 217–239 | MR | Zbl

[19] M. Kontsevich, “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66:3 (2003), 157–216 ; arXiv: q-alg/9709040 | DOI | MR | Zbl

[20] N. E. Hurt, Geometric quantization in action. Applications of harmonic analysis in quantum statistical mechanics and quantum field theory, Math. Appl. (East European Ser.), 8, Reidel Publ., Dordrecht–Boston, MA, 1983 | MR | MR | Zbl

[21] X. Tang, “A counter example of invariant deformation quantization”, Proceedings of the 4th conference on Poisson geometry (Luxembourg, 2004), Trav. Math., 16, Univ. Luxembourg, Luxembourg, 2005, 273–283 ; arXiv: math/0411626 | MR | Zbl