Almost computably enumerable families of sets
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1451-1458
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An almost computably enumerable family that is not
$\varnothing'$-computably enumerable is constructed. Moreover, it is established
that for any computably enumerable (c.e.) set $A$ there exists
a family that is $X$-c.e. if and only if the set $X$ is not
$A$-computable.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_2008_199_10_a1,
     author = {I. Sh. Kalimullin},
     title = {Almost computably enumerable families of sets},
     journal = {Sbornik. Mathematics},
     pages = {1451--1458},
     publisher = {mathdoc},
     volume = {199},
     number = {10},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/}
}
                      
                      
                    I. Sh. Kalimullin. Almost computably enumerable families of sets. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1451-1458. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/