@article{SM_2008_199_10_a1,
author = {I. Sh. Kalimullin},
title = {Almost computably enumerable families of sets},
journal = {Sbornik. Mathematics},
pages = {1451--1458},
year = {2008},
volume = {199},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/}
}
I. Sh. Kalimullin. Almost computably enumerable families of sets. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1451-1458. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/
[1] H. Rogers, jr., Theory of recursive functions and effective computability, McGraw-Hill, New York–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl
[2] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Logic, Springer-Verlag, Berlin, 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe mat. obschestvo, Kazan, 2000 | MR | Zbl | MR | Zbl
[3] J. Stillwell, “Decidability of the “almost all” theory of degrees”, J. Symbolic Logic, 37:3 (1972), 501–506 | DOI | MR | Zbl
[4] S. Wehner, “Enumerations, countable structures and Turing degrees”, Proc. Amer. Math. Soc., 126:7 (1998), 2131–2139 | DOI | MR | Zbl
[5] S. Goncharov, V. Harizanov, J. Knight, Ch. McCoy, R. Miller, R. Solomon, “Enumerations in computable structure theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl