Almost computably enumerable families of sets
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1451-1458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An almost computably enumerable family that is not $\varnothing'$-computably enumerable is constructed. Moreover, it is established that for any computably enumerable (c.e.) set $A$ there exists a family that is $X$-c.e. if and only if the set $X$ is not $A$-computable. Bibliography: 5 titles.
@article{SM_2008_199_10_a1,
     author = {I. Sh. Kalimullin},
     title = {Almost computably enumerable families of sets},
     journal = {Sbornik. Mathematics},
     pages = {1451--1458},
     year = {2008},
     volume = {199},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/}
}
TY  - JOUR
AU  - I. Sh. Kalimullin
TI  - Almost computably enumerable families of sets
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1451
EP  - 1458
VL  - 199
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/
LA  - en
ID  - SM_2008_199_10_a1
ER  - 
%0 Journal Article
%A I. Sh. Kalimullin
%T Almost computably enumerable families of sets
%J Sbornik. Mathematics
%D 2008
%P 1451-1458
%V 199
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/
%G en
%F SM_2008_199_10_a1
I. Sh. Kalimullin. Almost computably enumerable families of sets. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1451-1458. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a1/

[1] H. Rogers, jr., Theory of recursive functions and effective computability, McGraw-Hill, New York–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl

[2] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Logic, Springer-Verlag, Berlin, 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe mat. obschestvo, Kazan, 2000 | MR | Zbl | MR | Zbl

[3] J. Stillwell, “Decidability of the “almost all” theory of degrees”, J. Symbolic Logic, 37:3 (1972), 501–506 | DOI | MR | Zbl

[4] S. Wehner, “Enumerations, countable structures and Turing degrees”, Proc. Amer. Math. Soc., 126:7 (1998), 2131–2139 | DOI | MR | Zbl

[5] S. Goncharov, V. Harizanov, J. Knight, Ch. McCoy, R. Miller, R. Solomon, “Enumerations in computable structure theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl