Characters of projective representations of the infinite generalized symmetric group
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1421-1450
Voir la notice de l'article provenant de la source Math-Net.Ru
By the infinite generalized symmetric group we mean the group $B_m=\mathfrak{S}_\infty\ltimes\mathbb{Z}_m^\infty$, where $\mathbb{Z}_m^\infty$ is the group of all sequences $\{z_k\}_{k=1}^\infty$ in $\mathbb{Z}_m$ containing only finitely many non-zero elements $z_k$ and $\mathfrak{S}_\infty$ is the group of all finitely supported permutations of the positive integers. A complete description of the projective factor representations of $B_m$ of finite type is obtained.
Bibliography: 18 titles.
@article{SM_2008_199_10_a0,
author = {A. V. Dudko and N. I. Nessonov},
title = {Characters of projective representations of the infinite generalized symmetric group},
journal = {Sbornik. Mathematics},
pages = {1421--1450},
publisher = {mathdoc},
volume = {199},
number = {10},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/}
}
TY - JOUR AU - A. V. Dudko AU - N. I. Nessonov TI - Characters of projective representations of the infinite generalized symmetric group JO - Sbornik. Mathematics PY - 2008 SP - 1421 EP - 1450 VL - 199 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/ LA - en ID - SM_2008_199_10_a0 ER -
A. V. Dudko; N. I. Nessonov. Characters of projective representations of the infinite generalized symmetric group. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1421-1450. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/