Characters of projective representations of the infinite generalized symmetric group
Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1421-1450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the infinite generalized symmetric group we mean the group $B_m=\mathfrak{S}_\infty\ltimes\mathbb{Z}_m^\infty$, where $\mathbb{Z}_m^\infty$ is the group of all sequences $\{z_k\}_{k=1}^\infty$ in $\mathbb{Z}_m$ containing only finitely many non-zero elements $z_k$ and $\mathfrak{S}_\infty$ is the group of all finitely supported permutations of the positive integers. A complete description of the projective factor representations of $B_m$ of finite type is obtained. Bibliography: 18 titles.
@article{SM_2008_199_10_a0,
     author = {A. V. Dudko and N. I. Nessonov},
     title = {Characters of projective representations of the infinite generalized symmetric group},
     journal = {Sbornik. Mathematics},
     pages = {1421--1450},
     year = {2008},
     volume = {199},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/}
}
TY  - JOUR
AU  - A. V. Dudko
AU  - N. I. Nessonov
TI  - Characters of projective representations of the infinite generalized symmetric group
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1421
EP  - 1450
VL  - 199
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/
LA  - en
ID  - SM_2008_199_10_a0
ER  - 
%0 Journal Article
%A A. V. Dudko
%A N. I. Nessonov
%T Characters of projective representations of the infinite generalized symmetric group
%J Sbornik. Mathematics
%D 2008
%P 1421-1450
%V 199
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/
%G en
%F SM_2008_199_10_a0
A. V. Dudko; N. I. Nessonov. Characters of projective representations of the infinite generalized symmetric group. Sbornik. Mathematics, Tome 199 (2008) no. 10, pp. 1421-1450. http://geodesic.mathdoc.fr/item/SM_2008_199_10_a0/

[1] A. O. Morris, H. I. Jones, “Projective representations of generalized symmetric groups”, Sem. Lothar. Combin., 50 (2003) | MR | Zbl

[2] I. Schur, “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 139 (1911), 155–250 | Zbl

[3] M. L. Nazarov, “An orthogonal basis in irreducible projective representations of the symmetric group”, Funct. Anal. Appl., 22:1 (1988), 66–68 | DOI | MR | Zbl

[4] M. L. Nazarov, “Quotient representations of the infinite spin-symmetric group”, Russian Math. Surveys, 43:4 (1988), 229–230 | DOI | MR | Zbl

[5] M. L. Nazarov, “Projective representations of the infinite symmetric group”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 115–130 | MR | Zbl

[6] E. W. Read, “The projective representations: of the generalized symmetric group”, J. Algebra, 46:1 (1977), 102–133 | DOI | MR | Zbl

[7] J. R. Stembridge, “The projective representations of the hyperoctahedral group”, J. Algebra, 145:2 (1992), 396–453 | DOI | MR | Zbl

[8] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl

[9] S. V. Kerov, A. M. Vershik, “Characters and factor representations of the infinite symmetric group”, Soviet Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl

[10] S. V. Kerov, Asimptoticheskaya teoriya predstavlenii simmetricheskoi gruppy i ee primeneniya v analize, Dis. ... dokt. fiz.-matem. nauk, POMI, S.-Peterburg, 1994

[11] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl

[12] G. I. Ol'shanskii, “Unitary representations of $(G,K)$-pairs that are connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[13] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. II, Zapiski nauch. sem. POMI, 240, POMI, SPb., 1997, 166–228 ; A. Okounkov, “On representations of the infinite symmetric group”, J. Math. Sci. (New York), 96:5 (1999), 3550–3589 ; arXiv: math/9803037 | MR | Zbl | DOI

[14] A. A. Dudko, N. I. Nessonov, “A description of characters on the infinite wreath product”, Methods Funct. Anal. Topology, 13:4 (2007), 301–317 ; arXiv: math/0510597 | MR | Zbl

[15] V. N. Ivanov, “Razmernost kosykh sdvinutykh diagramm Yunga i proektivnye kharaktery beskonechnoi simmetricheskoi gruppy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. II, Zap. nauchn. sem. POMI, 240, POMI, SPb., 1997, 115–135 ; V. N. Ivanov, “Dimensions of skew-shifted young diagrams and projective characters of the infinite symmetric group”, J. Math. Sci. (New York), 96:5 (1999), 3517–3530 ; arXiv: math/0303169 | MR | Zbl | DOI

[16] R. Boyer, “Character theory of infinite wreath products”, Int. J. Math. Math. Sci., 2005, no. 9, 1365–1379 | DOI | MR | Zbl

[17] J. W. Davies, A. O. Morris, “The Schur multiplier of the generalized symmetric group”, J. London Math. Soc. (2), 8 (1974), 615–620 | DOI | MR | Zbl

[18] M. Takesaki, Theory of operator algebras. II, Encyclopaedia Math. Sci., 125, Springer-Verlag, Berlin, 2003 | MR | Zbl