Lower bounds for homological dimensions of Banach algebras
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1351-1377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a commutative unital Banach algebra with infinite spectrum. Then by Helemskiǐ's global dimension theorem the global homological dimension of $A$ is strictly greater than one. This estimate has no analogue for abstract algebras or non-normable topological algebras. It is proved in the present paper that for every unital Banach algebra $B$ the global homological dimensions and the homological bidimensions of the Banach algebras $A\mathbin{\widehat{\otimes}}B$ and $B$ (assuming certain restrictions on $A$) are related by $\operatorname{dg}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{dg}B$ and $\operatorname{db}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{db}B$. Thus, a partial extension of Helemskiǐ's theorem to tensor products is obtained. Bibliography: 28 titles.
@article{SM_2007_198_9_a7,
     author = {Yu. V. Selivanov},
     title = {Lower bounds for homological dimensions of {Banach} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1351--1377},
     year = {2007},
     volume = {198},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/}
}
TY  - JOUR
AU  - Yu. V. Selivanov
TI  - Lower bounds for homological dimensions of Banach algebras
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1351
EP  - 1377
VL  - 198
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/
LA  - en
ID  - SM_2007_198_9_a7
ER  - 
%0 Journal Article
%A Yu. V. Selivanov
%T Lower bounds for homological dimensions of Banach algebras
%J Sbornik. Mathematics
%D 2007
%P 1351-1377
%V 198
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/
%G en
%F SM_2007_198_9_a7
Yu. V. Selivanov. Lower bounds for homological dimensions of Banach algebras. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1351-1377. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/

[1] A. Ya. Khelemskii, “Nizshie znacheniya, prinimaemye globalnoi gomologicheskoi razmernostyu funktsionalnykh banakhovykh algebr”, Tr. sem. im. I. G. Petrovskogo, 3 (1978), 223–242 ; A. Ya. Khelemskij, “Smallest values assumed by the global homological dimension of Banach function algebras”, Amer. Math. Soc. Transl. Ser. 2, 124 (1984), 75–96 | MR | Zbl | Zbl

[2] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 ; A. Ya. Helemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl | Zbl

[3] S. Pott, “An account on the global homological dimension theorem of A. Ya. Helemskii”, Ann. Univ. Sarav. Ser. Math., 9:3 (1999), 155–194 | MR | Zbl

[4] Z. A. Lykova, “Otsenka snizu globalnoi gomologicheskoi razmernosti beskonechnomernykh CCR-algebr”, UMN, 41:1 (1986), 197–198 | MR | Zbl

[5] O. Yu. Aristov, “Teorema o globalnoi razmernosti dlya neunitalnykh i nekotorykh drugikh separabelnykh $C^*$-algebr”, Matem. sb., 186:9 (1995), 3–18 | MR | Zbl

[6] Yu. V. Selivanov, “Biproektivnye banakhovy algebry, ikh stroenie, kogomologii i svyaz s yadernymi operatorami”, Funkts. analiz i ego pril., 10:1 (1976), 89–90 | MR | Zbl

[7] Yu. V. Selivanov, “Coretraction problems and homological properties of Banach algebras”, Topological homology, Nova Sci. Publ., Huntington, NY, 2000, 145–199 | MR | Zbl

[8] F. Ghahramani, Yu. V. Selivanov, “The global dimension theorem for weighted convolution algebras”, Proc. Edinburgh Math. Soc. (2), 41:2 (1998), 393–406 | DOI | MR | Zbl

[9] Yu. V. Selivanov, “Homological dimensions of tensor products of Banach algebras”, Banach Algebras '97, Proceedings of the 13th international conference on Banach algebras (University of Tübingen, Blaubeuren, Germany, 1997), de Gruyter, Berlin, 1998, 441–459 | MR | Zbl

[10] S. B. Tabaldyev, “Additivnost gomologicheskikh razmernostei dlya nekotorogo klassa banakhovykh algebr”, Funkts. analiz i ego pril., 40:3 (2006), 93–95 | MR | Zbl

[11] A. Ya. Khelemskii, “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81(123):3 (1970), 430–444 | MR | Zbl

[12] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monogr. (N.S.), 24, Clarendon Press, Oxford, 2000 | MR | Zbl

[13] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 ; A. Ya. Helemskii, Banach and locally convex algebras, Oxford Sci. Publ., Clarendon Press, Oxford, 1993 | MR | Zbl | MR | Zbl

[14] Yu. V. Selivanov, “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Cer. matem., 43:5 (1979), 1159–1174 ; J. V. Selivanov, “Biprojective Banach algebras”, Math. USSR-Izv., 15:2 (1980), 387–399 | MR | Zbl | DOI | MR | Zbl

[15] A. Ya. Khelemskii, “Opisanie otnositelno proektivnykh idealov v algebrakh $C(\Omega)$”, Dokl. AN SSSR, 195:6 (1970), 1286–1289 | MR | Zbl

[16] R. Engelking, Obschaya topologiya, Mir, M., 1986 ; R. Engelking, General topology, PWN, Warsaw, 1977 | MR | MR | Zbl

[17] C. E. Rickart, General theory of Banach algebras, Nostrand, Princeton, NJ–Toronto–London–New York, 1960 | MR | Zbl

[18] J. Cigler, V. Losert, P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Appl. Math., 46, Dekker, New York, 1979 | MR | Zbl

[19] S. Maklein, Gomologiya, Mir, M., 1966 ; S. MacLane, Homology, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | Zbl | MR | Zbl

[20] C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[21] Yu. V. Selivanov, “O znacheniyakh, prinimaemykh globalnoi razmernostyu v nekotorykh klassakh banakhovykh algebr”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 30:1 (1975), 37–42 | MR | Zbl

[22] R. S. Phillips, “On linear transformations”, Trans. Amer. Math. Soc., 48:3 (1940), 516–541 | DOI | MR | Zbl

[23] A. Ya. Khelemskii, “O gomologicheskoi razmernosti banakhovykh algebr analiticheskikh funktsii”, Matem. sb., 83(125):2(10) (1970), 222–233 | MR | Zbl

[24] A. Browder, Introducton to function algebras, Benjamin, New York–Amsterdam, 1969 | MR | Zbl

[25] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[26] Yu. V. Selivanov, Kogomologii banakhovykh i blizkikh k nim algebr, Dis. ... dokt. fiz.-matem. nauk, M., 2002

[27] Yu. V. Selivanov, “Gomologicheskaya razmernost tsiklicheskikh banakhovykh modulei i gomologicheskaya kharakterizatsiya metrizuemykh kompaktov”, Matem. zametki, 17:2 (1975), 301–305 | MR | Zbl

[28] A. Pelchinskii, Lineinye prodolzheniya, lineinye usredneniya i ikh primeneniya k lineinoi topologicheskoi klassifikatsii prostranstv nepreryvnykh funktsii, Mir, M., 1970 ; A. Pelczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.), 58, Polish Acad. Sci. Inst. Math., Warsaw, 1968 | MR | Zbl | MR | Zbl