Lower bounds for homological dimensions of Banach algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1351-1377
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $A$ be a commutative unital Banach algebra with infinite spectrum. Then by Helemskiǐ's global dimension theorem the global homological dimension of $A$ is strictly greater than one.
This estimate has no analogue for abstract algebras or non-normable topological algebras. It is proved in the present paper that for every unital Banach algebra $B$ the global homological dimensions and the homological bidimensions of the Banach algebras
$A\mathbin{\widehat{\otimes}}B$ and $B$ (assuming certain restrictions on $A$) are related by $\operatorname{dg}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{dg}B$ and $\operatorname{db}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{db}B$.
Thus, a partial extension of Helemskiǐ's theorem to tensor products is obtained.
Bibliography: 28 titles.
			
            
            
            
          
        
      @article{SM_2007_198_9_a7,
     author = {Yu. V. Selivanov},
     title = {Lower bounds for homological dimensions of {Banach} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1351--1377},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/}
}
                      
                      
                    Yu. V. Selivanov. Lower bounds for homological dimensions of Banach algebras. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1351-1377. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/
