Lower bounds for homological dimensions of Banach algebras
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1351-1377

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a commutative unital Banach algebra with infinite spectrum. Then by Helemskiǐ's global dimension theorem the global homological dimension of $A$ is strictly greater than one. This estimate has no analogue for abstract algebras or non-normable topological algebras. It is proved in the present paper that for every unital Banach algebra $B$ the global homological dimensions and the homological bidimensions of the Banach algebras $A\mathbin{\widehat{\otimes}}B$ and $B$ (assuming certain restrictions on $A$) are related by $\operatorname{dg}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{dg}B$ and $\operatorname{db}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{db}B$. Thus, a partial extension of Helemskiǐ's theorem to tensor products is obtained. Bibliography: 28 titles.
@article{SM_2007_198_9_a7,
     author = {Yu. V. Selivanov},
     title = {Lower bounds for homological dimensions of {Banach} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1351--1377},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/}
}
TY  - JOUR
AU  - Yu. V. Selivanov
TI  - Lower bounds for homological dimensions of Banach algebras
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1351
EP  - 1377
VL  - 198
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/
LA  - en
ID  - SM_2007_198_9_a7
ER  - 
%0 Journal Article
%A Yu. V. Selivanov
%T Lower bounds for homological dimensions of Banach algebras
%J Sbornik. Mathematics
%D 2007
%P 1351-1377
%V 198
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/
%G en
%F SM_2007_198_9_a7
Yu. V. Selivanov. Lower bounds for homological dimensions of Banach algebras. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1351-1377. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a7/