Homogeneous conservative Wiener--Hopf equation
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1341-1350

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a $P^*$-solution of the homogeneous generalized Wiener–Hopf equation $$ S(x)=\int_{-\infty}^xS(x-y)\,F(dy),\qquad x\geqslant0, $$ is proved, where $F$ is a probability distribution of recurrent type in $\mathbb R$. Asymptotic properties of this solution are established. Bibliography: 10 titles.
@article{SM_2007_198_9_a6,
     author = {M. S. Sgibnev},
     title = {Homogeneous conservative {Wiener--Hopf} equation},
     journal = {Sbornik. Mathematics},
     pages = {1341--1350},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Homogeneous conservative Wiener--Hopf equation
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1341
EP  - 1350
VL  - 198
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/
LA  - en
ID  - SM_2007_198_9_a6
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Homogeneous conservative Wiener--Hopf equation
%J Sbornik. Mathematics
%D 2007
%P 1341-1350
%V 198
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/
%G en
%F SM_2007_198_9_a6
M. S. Sgibnev. Homogeneous conservative Wiener--Hopf equation. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1341-1350. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/