Homogeneous conservative Wiener--Hopf equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1341-1350
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The existence of a $P^*$-solution of the homogeneous generalized Wiener–Hopf equation
$$
S(x)=\int_{-\infty}^xS(x-y)\,F(dy),\qquad x\geqslant0,
$$ 
is proved, where $F$ is a probability distribution of recurrent type in $\mathbb R$.
Asymptotic properties of this solution are established. 
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_2007_198_9_a6,
     author = {M. S. Sgibnev},
     title = {Homogeneous conservative {Wiener--Hopf} equation},
     journal = {Sbornik. Mathematics},
     pages = {1341--1350},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/}
}
                      
                      
                    M. S. Sgibnev. Homogeneous conservative Wiener--Hopf equation. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1341-1350. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/
