Homogeneous conservative Wiener–Hopf equation
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1341-1350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of a $P^*$-solution of the homogeneous generalized Wiener–Hopf equation $$ S(x)=\int_{-\infty}^xS(x-y)\,F(dy),\qquad x\geqslant0, $$ is proved, where $F$ is a probability distribution of recurrent type in $\mathbb R$. Asymptotic properties of this solution are established. Bibliography: 10 titles.
@article{SM_2007_198_9_a6,
     author = {M. S. Sgibnev},
     title = {Homogeneous conservative {Wiener{\textendash}Hopf} equation},
     journal = {Sbornik. Mathematics},
     pages = {1341--1350},
     year = {2007},
     volume = {198},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Homogeneous conservative Wiener–Hopf equation
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1341
EP  - 1350
VL  - 198
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/
LA  - en
ID  - SM_2007_198_9_a6
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Homogeneous conservative Wiener–Hopf equation
%J Sbornik. Mathematics
%D 2007
%P 1341-1350
%V 198
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/
%G en
%F SM_2007_198_9_a6
M. S. Sgibnev. Homogeneous conservative Wiener–Hopf equation. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1341-1350. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a6/

[1] F. Spitzer, “The Wiener–Hopf equation whose kernel is a probability density”, Duke Math. J., 24:3 (1957), 327–343 | DOI | MR | Zbl

[2] F. Spitzer, “The Wiener–Hopf equation whose kernel is a probability density. II”, Duke Math. J., 27:3 (1960), 363–372 | DOI | MR | Zbl

[3] E. Lukach, Kharakteristicheskie funktsii, Nauka, M., 1979 ; E. Lukacs, Characteristic functions, Charles Griffin, London; Hafner Publ., New York, 1970 | MR | Zbl | MR | Zbl

[4] N. B. Engibaryan, “Uravneniya v svertkakh, soderzhaschie singulyarnye veroyatnostnye raspredeleniya”, Izv. RAN. Ser. matem., 60:2 (1996), 21–48 | MR | Zbl

[5] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1967 ; W. Feller, An introduction to probability theory and its applications, vol. II, Wiley, New York–London–Sydney, 1966 | MR | Zbl | MR | Zbl

[6] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 ; J. Neveu, Bases mathématiques du calcul des probabilités, Masson, Paris, 1964 | MR | Zbl | MR | Zbl

[7] D. Koks, V. Smit, Teoriya vosstanovleniya, Sovetskoe radio, M., 1967 | MR | Zbl

[8] M. S. Sgibnev, “O teoreme vosstanovleniya v sluchae beskonechnoi dispersii”, Sib. matem. zhurn., 22:5 (1981), 178–189 ; M. S. Sgibnev, “Renewal theorem in the case of an infinite variance”, Siberian Math. J., 22:5 (1982), 787–796 | MR | Zbl | DOI | Zbl

[9] R. A. Doney, “Moments of ladder heights in random walks”, J. Appl. Probab., 17:1 (1980), 248–252 | DOI | MR | Zbl

[10] M. Loev, Teoriya veroyatnostei, IL, M., 1962 ; M. Loève, Probability theory, Nostrand, Princeton, NJ–Toronto–New York–London, 1960 | MR | MR | Zbl