Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Givental's theorem for complete intersections in smooth toric varieties is generalized to Fano varieties. The Gromov–Witten invariants are found for Fano varieties of dimension $\geqslant3$ that are complete intersections in weighted projective spaces or singular toric varieties. A generalized Riemann–Roch equation is also obtained for such varieties. As a consequence, the counting matrices of smooth Fano threefolds with Picard group $\mathbb Z$ and anticanonical degrees 2, 8, and 16 are calculated. Bibliography: 29 titles.
@article{SM_2007_198_9_a5,
     author = {V. V. Przyjalkowski},
     title = {Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties},
     journal = {Sbornik. Mathematics},
     pages = {1325--1340},
     year = {2007},
     volume = {198},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1325
EP  - 1340
VL  - 198
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/
LA  - en
ID  - SM_2007_198_9_a5
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
%J Sbornik. Mathematics
%D 2007
%P 1325-1340
%V 198
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/
%G en
%F SM_2007_198_9_a5
V. V. Przyjalkowski. Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/

[1] A. B. Givental, “Equivariant Gromov–Witten invariants”, Internat. Math. Res. Notices, 1996:13 (1996), 613–663 ; arXiv: alg-geom/9603021 | DOI | MR | Zbl

[2] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover, New York, 1972 | MR | Zbl

[3] V. V. Golyshev, “Variatsii Rimana–Rokha”, Izv. RAN. Ser. matem., 65:5 (2001), 3–32 | MR | Zbl

[4] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields, Proc. Polish–North Amer. Semin. (Vancouver 1981), Lecture Notes in Math., 956, Springer-Verlag, Berlin, 1982, 34–71 | DOI | MR | Zbl

[5] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys, 164:3 (1994), 525–562 | DOI | MR | Zbl

[6] K. Behrend, Yu. Manin, “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85:1 (1996), 1–60 ; arXiv: alg-geom/9506023 | DOI | MR | Zbl

[7] K. Behrend, “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127:3 (1997), 601–617 | DOI | MR | Zbl

[8] Yu. I. Manin, Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial, M., 2002; Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[9] Dzh. Kharris, Ya. Morrison, Moduli krivykh, Mir, M., 2004; J. Harris, I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998 | MR | Zbl

[10] A. Vistoli, “Intersection theory on algebraic stacks and on their moduli spaces”, Invent. Math., 97:3 (1989), 613–670 | DOI | MR | Zbl

[11] A. Gathmann, “Absolute and relative Gromov–Witten invariants of very ample hypersurfaces”, Duke Math. J., 115:2 (2002), 171–203 ; arXiv: math.AG/9908054 | DOI | MR | Zbl

[12] A. Gathmann, “Relative Gromov–Witten invariants and the mirror formula”, Math. Ann., 325:2 (2003), 393–412 ; arXiv: math.AG/0009190 | DOI | MR | Zbl

[13] Y. -P. Lee, R. Pandharipande, “A reconstruction theorem in quantum cohomology and quantum $K$-theory”, Amer. J. Math., 126:6 (2004), 1367–1379 ; arXiv: math.AG/0104084 | DOI | MR | Zbl

[14] A. Beauville, “Quantum cohomology of complete intersections”, Mat. Fiz. Anal. Geom., 2:3–4 (1995), 384–398 ; arXiv: alg-geom/9501008 | MR | Zbl

[15] M. Kontsevich, Y. Manin, “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196:2 (1998), 385–398 | DOI | MR | Zbl

[16] V. V. Przhiyalkovskii, “Invarianty Gromova–Vittena trekhmernykh mnogoobrazii Fano roda 6 i roda 8”, Matem. sb., 198:3 (2007), 145–158 ; V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 ; arXiv: math.AG/0410327 | MR | DOI

[17] A. Bertram, H. P. Kley, “New recursions for genus-zero Gromov–Witten invariants”, Topology, 44:1 (2005), 1–24 ; arXiv: math.AG/0007082 | DOI | MR | Zbl

[18] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[19] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[20] V. V. Batyrev, “Quantum cohomology rings of toric manifolds”, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992), Astérisque, 218, 1993, 9–34 ; arXiv: alg-geom/9310004 | MR | Zbl

[21] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics, Proceedings of the 38th Taniguchi symposium (Kyoto, 1996), Progr. Math., 160, Birkhäuzer, Boston, MA, 1998, 141–175 ; arXiv: alg-geom/9701016 | MR | Zbl

[22] V. V. Golyshev, “Problemy geometrichnosti i modulyarnost nekotorykh variatsii Rimana–Rokha”, Dokl. RAN, 386:5 (2002), 583–588 | MR | Zbl

[23] V. A. Iskovskikh, “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 516–562 | MR | Zbl

[24] V. A. Iskovskikh, “Trekhmernye mnogoobraziya Fano. II”, Izv. AN SSSR. Ser. matem., 42:3 (1978), 504–549 | MR

[25] V. A. Iskovskikh, “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 59–157 | MR | Zbl

[26] V. A. Iskovskikh, Lektsii po trekhmernym algebraicheskim mnogoobraziyam. Mnogoobraziya Fano, Izd-vo MGU, M., 1988 | Zbl

[27] V. A. Iskovskikh, Yu. G. Prokhorov, Fano varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999 | MR | Zbl

[28] S. Mukai, “Fano 3-folds”, Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263 | MR | Zbl

[29] V. V. Golyshev, “Modulyarnost uravnenii D3 i klassifikatsiya V. Iskovskikh”, Dokl. RAN, 396:6 (2004), 733–739 ; V. V. Golyshev, “Modularity of equations D3 and the Iskovskikh classification”, Dokl. Math., 69:3 (2004), 443–449 ; arXiv: math.AG/0405039 | MR | Zbl