@article{SM_2007_198_9_a5,
author = {V. V. Przyjalkowski},
title = {Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties},
journal = {Sbornik. Mathematics},
pages = {1325--1340},
year = {2007},
volume = {198},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/}
}
TY - JOUR AU - V. V. Przyjalkowski TI - Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties JO - Sbornik. Mathematics PY - 2007 SP - 1325 EP - 1340 VL - 198 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/ LA - en ID - SM_2007_198_9_a5 ER -
V. V. Przyjalkowski. Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/
[1] A. B. Givental, “Equivariant Gromov–Witten invariants”, Internat. Math. Res. Notices, 1996:13 (1996), 613–663 ; arXiv: alg-geom/9603021 | DOI | MR | Zbl
[2] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover, New York, 1972 | MR | Zbl
[3] V. V. Golyshev, “Variatsii Rimana–Rokha”, Izv. RAN. Ser. matem., 65:5 (2001), 3–32 | MR | Zbl
[4] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields, Proc. Polish–North Amer. Semin. (Vancouver 1981), Lecture Notes in Math., 956, Springer-Verlag, Berlin, 1982, 34–71 | DOI | MR | Zbl
[5] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys, 164:3 (1994), 525–562 | DOI | MR | Zbl
[6] K. Behrend, Yu. Manin, “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85:1 (1996), 1–60 ; arXiv: alg-geom/9506023 | DOI | MR | Zbl
[7] K. Behrend, “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127:3 (1997), 601–617 | DOI | MR | Zbl
[8] Yu. I. Manin, Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial, M., 2002; Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[9] Dzh. Kharris, Ya. Morrison, Moduli krivykh, Mir, M., 2004; J. Harris, I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998 | MR | Zbl
[10] A. Vistoli, “Intersection theory on algebraic stacks and on their moduli spaces”, Invent. Math., 97:3 (1989), 613–670 | DOI | MR | Zbl
[11] A. Gathmann, “Absolute and relative Gromov–Witten invariants of very ample hypersurfaces”, Duke Math. J., 115:2 (2002), 171–203 ; arXiv: math.AG/9908054 | DOI | MR | Zbl
[12] A. Gathmann, “Relative Gromov–Witten invariants and the mirror formula”, Math. Ann., 325:2 (2003), 393–412 ; arXiv: math.AG/0009190 | DOI | MR | Zbl
[13] Y. -P. Lee, R. Pandharipande, “A reconstruction theorem in quantum cohomology and quantum $K$-theory”, Amer. J. Math., 126:6 (2004), 1367–1379 ; arXiv: math.AG/0104084 | DOI | MR | Zbl
[14] A. Beauville, “Quantum cohomology of complete intersections”, Mat. Fiz. Anal. Geom., 2:3–4 (1995), 384–398 ; arXiv: alg-geom/9501008 | MR | Zbl
[15] M. Kontsevich, Y. Manin, “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196:2 (1998), 385–398 | DOI | MR | Zbl
[16] V. V. Przhiyalkovskii, “Invarianty Gromova–Vittena trekhmernykh mnogoobrazii Fano roda 6 i roda 8”, Matem. sb., 198:3 (2007), 145–158 ; V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 ; arXiv: math.AG/0410327 | MR | DOI
[17] A. Bertram, H. P. Kley, “New recursions for genus-zero Gromov–Witten invariants”, Topology, 44:1 (2005), 1–24 ; arXiv: math.AG/0007082 | DOI | MR | Zbl
[18] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[19] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl
[20] V. V. Batyrev, “Quantum cohomology rings of toric manifolds”, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992), Astérisque, 218, 1993, 9–34 ; arXiv: alg-geom/9310004 | MR | Zbl
[21] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics, Proceedings of the 38th Taniguchi symposium (Kyoto, 1996), Progr. Math., 160, Birkhäuzer, Boston, MA, 1998, 141–175 ; arXiv: alg-geom/9701016 | MR | Zbl
[22] V. V. Golyshev, “Problemy geometrichnosti i modulyarnost nekotorykh variatsii Rimana–Rokha”, Dokl. RAN, 386:5 (2002), 583–588 | MR | Zbl
[23] V. A. Iskovskikh, “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 516–562 | MR | Zbl
[24] V. A. Iskovskikh, “Trekhmernye mnogoobraziya Fano. II”, Izv. AN SSSR. Ser. matem., 42:3 (1978), 504–549 | MR
[25] V. A. Iskovskikh, “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 59–157 | MR | Zbl
[26] V. A. Iskovskikh, Lektsii po trekhmernym algebraicheskim mnogoobraziyam. Mnogoobraziya Fano, Izd-vo MGU, M., 1988 | Zbl
[27] V. A. Iskovskikh, Yu. G. Prokhorov, Fano varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999 | MR | Zbl
[28] S. Mukai, “Fano 3-folds”, Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263 | MR | Zbl
[29] V. V. Golyshev, “Modulyarnost uravnenii D3 i klassifikatsiya V. Iskovskikh”, Dokl. RAN, 396:6 (2004), 733–739 ; V. V. Golyshev, “Modularity of equations D3 and the Iskovskikh classification”, Dokl. Math., 69:3 (2004), 443–449 ; arXiv: math.AG/0405039 | MR | Zbl