Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340
Voir la notice de l'article provenant de la source Math-Net.Ru
Givental's theorem for complete intersections in smooth toric varieties is generalized to Fano varieties. The Gromov–Witten invariants are found for Fano varieties of dimension $\geqslant3$ that are complete intersections in weighted projective spaces or singular toric varieties. A generalized Riemann–Roch equation is also obtained for such varieties. As a consequence, the counting matrices of smooth Fano threefolds with Picard group $\mathbb Z$ and anticanonical degrees 2, 8, and 16 are calculated.
Bibliography: 29 titles.
@article{SM_2007_198_9_a5,
author = {V. V. Przyjalkowski},
title = {Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties},
journal = {Sbornik. Mathematics},
pages = {1325--1340},
publisher = {mathdoc},
volume = {198},
number = {9},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/}
}
TY - JOUR AU - V. V. Przyjalkowski TI - Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties JO - Sbornik. Mathematics PY - 2007 SP - 1325 EP - 1340 VL - 198 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/ LA - en ID - SM_2007_198_9_a5 ER -
%0 Journal Article %A V. V. Przyjalkowski %T Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties %J Sbornik. Mathematics %D 2007 %P 1325-1340 %V 198 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/ %G en %F SM_2007_198_9_a5
V. V. Przyjalkowski. Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/