Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340

Voir la notice de l'article provenant de la source Math-Net.Ru

Givental's theorem for complete intersections in smooth toric varieties is generalized to Fano varieties. The Gromov–Witten invariants are found for Fano varieties of dimension $\geqslant3$ that are complete intersections in weighted projective spaces or singular toric varieties. A generalized Riemann–Roch equation is also obtained for such varieties. As a consequence, the counting matrices of smooth Fano threefolds with Picard group $\mathbb Z$ and anticanonical degrees 2, 8, and 16 are calculated. Bibliography: 29 titles.
@article{SM_2007_198_9_a5,
     author = {V. V. Przyjalkowski},
     title = {Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties},
     journal = {Sbornik. Mathematics},
     pages = {1325--1340},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1325
EP  - 1340
VL  - 198
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/
LA  - en
ID  - SM_2007_198_9_a5
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties
%J Sbornik. Mathematics
%D 2007
%P 1325-1340
%V 198
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/
%G en
%F SM_2007_198_9_a5
V. V. Przyjalkowski. Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1325-1340. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a5/