Bases in the solution space of the Mellin system
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1277-1298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider algebraic functions $z$ satisfying equations of the following form: \begin{equation*} a_0 z^m+a_1z^{m_1}+a_2 z^{m_2}+\dots+a_nz^{m_n}+a_{n+1}=0. \tag{1} \end{equation*} Here $m>m_1>\dots>m_n>0$, $m,m_i\in\mathbb N$, and $z=z(a_0,\dots,a_{n+1})$ is a function of the complex variables $a_0,\dots,a_{n+1}$. Solutions of such algebraic equations are known to satisfy holonomic systems of linear differential equations with polynomial coefficients. In this paper we investigate one such system, which was introduced by Mellin. The holonomic rank of this system of equations and the dimension of the linear space of its algebraic solutions are computed. An explicit base in the solution space of the Mellin system is constructed in terms of roots of (1) and their logarithms. The monodromy of the Mellin system is shown to be always reducible and several results on the factorization of the Mellin operator in the one-variable case are presented. Bibliography: 18 titles.
@article{SM_2007_198_9_a3,
     author = {A. Dickenstein and T. M. Sadykov},
     title = {Bases in the solution space of the {Mellin} system},
     journal = {Sbornik. Mathematics},
     pages = {1277--1298},
     year = {2007},
     volume = {198},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/}
}
TY  - JOUR
AU  - A. Dickenstein
AU  - T. M. Sadykov
TI  - Bases in the solution space of the Mellin system
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1277
EP  - 1298
VL  - 198
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/
LA  - en
ID  - SM_2007_198_9_a3
ER  - 
%0 Journal Article
%A A. Dickenstein
%A T. M. Sadykov
%T Bases in the solution space of the Mellin system
%J Sbornik. Mathematics
%D 2007
%P 1277-1298
%V 198
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/
%G en
%F SM_2007_198_9_a3
A. Dickenstein; T. M. Sadykov. Bases in the solution space of the Mellin system. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1277-1298. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/

[1] I. M. Gelfand, A. V. Zelevinskii, M. M. Kapranov, “Gipergeometricheskie funktsii i toricheskie mnogoobraziya”, Funkts. analiz i ego pril., 23:2 (1989), 12–26 | MR | Zbl

[2] B. Sturmfels, “Solving algebraic equations in terms of $\mathscr A$-hypergeometric series”, Discrete Math., 210:1–3 (2000), 171–181 | DOI | MR | Zbl

[3] K. Mayr, “Über die Lösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen”, Monatsh. Math. Phys., 45:1 (1936), 280–313 | DOI | MR | Zbl

[4] H. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci., 172 (1921), 658–661 | Zbl

[5] E. Cattani, C. D'Andrea, A. Dickenstein, “The $\mathscr A$-hypergeometric system associated with a monomial curve”, Duke Math. J., 99:2 (1999), 179–207 | DOI | MR | Zbl

[6] A. Dickenstein, L. F. Matusevich, T. Sadykov, Bivariate hypergeometric $D$-modules, 196:1 (2005), 78–123, Adv. Math. | DOI | MR | Zbl

[7] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of N. H. Abel, Papers from the Abel bicentennial conference (University of Oslo, Norway, 2002), Springer-Verlag, Berlin, 2004, 653–672 | MR | Zbl

[8] U. Walther, “Duality and monodromy reducibility of $A$-hypergeometric systems”, Math. Ann., 338:1, 55–74 | DOI | MR | Zbl

[9] M. Kato, M. Noumi, “Monodromy groups of hypergeometric functions satisfying algebraic equations”, Tohoku Math. J. (2), 55:2 (2003), 189–205 | DOI | MR | Zbl

[10] A. Dikenshtein, T. M. Sadykov, “Algebraichnost reshenii sistemy uravnenii Mellina i ee monodromiya”, Dokl. RAN, 412:4 (2007), 448–450

[11] T. M. Sadykov, “On the Horn system of partial differential equations and series of hypergeometric type”, Math. Scand., 91:1 (2002), 127–149 | MR | Zbl

[12] J.-E. Björk, Rings of differential operators, North-Holland Math. Library, 21, North-Holland, Amsterdam–Oxford–New York, 1979 | MR | Zbl

[13] A. Adolphson, “Hypergeometric functions and rings generated by monomials”, Duke Math. J., 73:2 (1994), 269–290 | DOI | MR | Zbl

[14] M. Passare, T. Sadykov, A. Tsikh, “Singularities of hypergeometric functions in several variables”, Compos. Math., 141:3 (2005), 787–810 | DOI | MR | Zbl

[15] K. G. Fischer, J. Shapiro, “Mixed matrices and binomial ideals”, J. Pure Appl. Algebra, 113:1 (1996), 39–54 | DOI | MR | Zbl

[16] A. Dickenstein, L. F. Matusevich, E. Miller, Binomial $D$-modules, arXiv: math.AG/0610353

[17] F. Beukers, G. Heckman, “Monodromy for the hypergeometric function $_n F_{n-1}$”, Invent. Math., 95:2 (1989), 325–354 | DOI | MR | Zbl

[18] M. F. Singer, “Testing reducibility of linear differential operators: a group theoretic perspective”, Appl. Algebra Engrg. Comm. Comput., 7:2 (1996), 77–104 | DOI | MR | Zbl