Bases in the solution space of the Mellin system
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1277-1298

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider algebraic functions $z$ satisfying equations of the following form: \begin{equation*} a_0 z^m+a_1z^{m_1}+a_2 z^{m_2}+\dots+a_nz^{m_n}+a_{n+1}=0. \tag{1} \end{equation*} Here $m>m_1>\dots>m_n>0$, $m,m_i\in\mathbb N$, and $z=z(a_0,\dots,a_{n+1})$ is a function of the complex variables $a_0,\dots,a_{n+1}$. Solutions of such algebraic equations are known to satisfy holonomic systems of linear differential equations with polynomial coefficients. In this paper we investigate one such system, which was introduced by Mellin. The holonomic rank of this system of equations and the dimension of the linear space of its algebraic solutions are computed. An explicit base in the solution space of the Mellin system is constructed in terms of roots of (1) and their logarithms. The monodromy of the Mellin system is shown to be always reducible and several results on the factorization of the Mellin operator in the one-variable case are presented. Bibliography: 18 titles.
@article{SM_2007_198_9_a3,
     author = {A. Dickenstein and T. M. Sadykov},
     title = {Bases in the solution space of the {Mellin} system},
     journal = {Sbornik. Mathematics},
     pages = {1277--1298},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/}
}
TY  - JOUR
AU  - A. Dickenstein
AU  - T. M. Sadykov
TI  - Bases in the solution space of the Mellin system
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1277
EP  - 1298
VL  - 198
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/
LA  - en
ID  - SM_2007_198_9_a3
ER  - 
%0 Journal Article
%A A. Dickenstein
%A T. M. Sadykov
%T Bases in the solution space of the Mellin system
%J Sbornik. Mathematics
%D 2007
%P 1277-1298
%V 198
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/
%G en
%F SM_2007_198_9_a3
A. Dickenstein; T. M. Sadykov. Bases in the solution space of the Mellin system. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1277-1298. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a3/