Transitive Lie groups on $S^1\times S^{2m}$
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1261-1275

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of Lie groups acting transitively on the direct product of a circle and an even-dimensional sphere is described. For products of two spheres of dimension $>1$ a similar problem has already been solved by other authors. The minimal transitive Lie groups on $S^1$ and $S^{2m}$ are also indicated. As an application of these results, the structure of the automorphism group of one class of geometric structures, generalized quadrangles (a special case of Tits buildings) is considered. A conjecture put forward by Kramer is proved: the automorphism group of a connected generalized quadrangle of type $(1,2m)$ always contains a transitive subgroup that is the direct product of a compact simple Lie group and a one-dimensional Lie group. Bibliography: 16 titles.
@article{SM_2007_198_9_a2,
     author = {V. V. Gorbatsevich},
     title = {Transitive {Lie} groups on $S^1\times S^{2m}$},
     journal = {Sbornik. Mathematics},
     pages = {1261--1275},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Transitive Lie groups on $S^1\times S^{2m}$
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1261
EP  - 1275
VL  - 198
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/
LA  - en
ID  - SM_2007_198_9_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Transitive Lie groups on $S^1\times S^{2m}$
%J Sbornik. Mathematics
%D 2007
%P 1261-1275
%V 198
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/
%G en
%F SM_2007_198_9_a2
V. V. Gorbatsevich. Transitive Lie groups on $S^1\times S^{2m}$. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1261-1275. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/