Transitive Lie groups on $S^1\times S^{2m}$
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1261-1275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of Lie groups acting transitively on the direct product of a circle and an even-dimensional sphere is described. For products of two spheres of dimension $>1$ a similar problem has already been solved by other authors. The minimal transitive Lie groups on $S^1$ and $S^{2m}$ are also indicated. As an application of these results, the structure of the automorphism group of one class of geometric structures, generalized quadrangles (a special case of Tits buildings) is considered. A conjecture put forward by Kramer is proved: the automorphism group of a connected generalized quadrangle of type $(1,2m)$ always contains a transitive subgroup that is the direct product of a compact simple Lie group and a one-dimensional Lie group. Bibliography: 16 titles.
@article{SM_2007_198_9_a2,
     author = {V. V. Gorbatsevich},
     title = {Transitive {Lie} groups on $S^1\times S^{2m}$},
     journal = {Sbornik. Mathematics},
     pages = {1261--1275},
     year = {2007},
     volume = {198},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Transitive Lie groups on $S^1\times S^{2m}$
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1261
EP  - 1275
VL  - 198
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/
LA  - en
ID  - SM_2007_198_9_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Transitive Lie groups on $S^1\times S^{2m}$
%J Sbornik. Mathematics
%D 2007
%P 1261-1275
%V 198
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/
%G en
%F SM_2007_198_9_a2
V. V. Gorbatsevich. Transitive Lie groups on $S^1\times S^{2m}$. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1261-1275. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a2/

[1] D. Montgomery, H. Samelson, “Transformation groups of spheres”, Ann. of Math. (2), 44:3 (1943), 454–470 | DOI | MR | Zbl

[2] A. L. Onischik, Topologiya tranzitivnykh grupp preobrazovanii, Nauka, M., 1995 ; A. L. Onishchik, Topology of transitive transformation groups, Barth, Leipzig, 1994 | MR | Zbl | MR | Zbl

[3] B. Kamerich, Transitive transformations groups on product of two spheres, Meppel, Krips Repro, 1977

[4] L. Kramer, “Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces”, Mem. Amer. Math. Soc., 158:752 (2002) | MR | Zbl

[5] O. Bletz-Siebert, “Almost transitive actions on spaces with the rational homotopy of sphere products”, J. Lie Theory, 15:1 (2005), 1–11 | MR | Zbl

[6] V. V. Gorbatsevich, “Ob odnom rassloenii kompaktnogo odnorodnogo prostranstva”, Tr. MMO, 43 (1981), 116–141 ; V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Moscow Math. Soc., 1983, no. 1, 129–157 | MR | Zbl | MR

[7] V. V. Gorbatsevich, A. L. Onischik, “Gruppy Li preobrazovanii”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 20, VINITI, M., 1988, 103–240 | MR | Zbl

[8] V. V. Gorbatsevich, “Kriterii suschestvovaniya naturalnogo rassloeniya dlya kompaktnogo odnorodnogo mnogoobraziya”, Matem. zametki, 35:2 (1984), 277–285 | MR | Zbl

[9] V. Gorbatsevich, “Connected sums of compact manifolds and homogeneity”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 113–128 | MR | Zbl

[10] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh”, Matem. sb., 71(113):4 (1966), 483–494 | MR | Zbl

[11] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh. II”, Matem. sb., 74(116):3 (1967), 398–416 | MR | Zbl

[12] E. Ya. Vishik, “Gruppy Li, tranzitivnye na odnosvyaznykh kompaktnykh mnogoobraziyakh”, Matem. sb., 92(134):4(12) (1973), 564–570 | MR | Zbl

[13] V. V. Gorbatsevich, “O trekhmernykh odnorodnykh prostranstvakh”, Sib. matem. zhurn., 18:2 (1977), 280–293 | MR | Zbl

[14] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 ; D. P. Zelobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl | MR | Zbl

[15] Sh. Kobayasi, Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 ; S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl | MR | Zbl

[16] T. Grundhöfer, N. Knarr, “Topology in generalized quadrangles”, Topology Appl., 34:2 (1990), 139–152 | DOI | MR | Zbl