The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1247-1260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The 2-cohomology group is determined for the finite simple orthogonal group $\Omega^-(4,q)$, where $q$ is odd, with coefficients in the natural module. For $q\ne9$ this group is trivial, and for $q=9$ it is isomorphic to $Z_3^4$. Thus Küsefoglu's result is corrected. Bibliography: 5 titles.
@article{SM_2007_198_9_a1,
     author = {V. P. Burichenko},
     title = {The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module},
     journal = {Sbornik. Mathematics},
     pages = {1247--1260},
     year = {2007},
     volume = {198},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/}
}
TY  - JOUR
AU  - V. P. Burichenko
TI  - The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1247
EP  - 1260
VL  - 198
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/
LA  - en
ID  - SM_2007_198_9_a1
ER  - 
%0 Journal Article
%A V. P. Burichenko
%T The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
%J Sbornik. Mathematics
%D 2007
%P 1247-1260
%V 198
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/
%G en
%F SM_2007_198_9_a1
V. P. Burichenko. The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1247-1260. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/

[1] A. S. Küsefoglu, “The second degree cohomology of finite orthogonal groups, I”, J. Algebra, 56:1 (1979), 207–220 | DOI | MR | Zbl

[2] A. S. Küsefoglu, “The second degree cohomology of finite orthogonal groups, II”, J. Algebra, 67:1 (1980), 88–109 | DOI | MR | Zbl

[3] Zh. Dedonne, Geometriya klassicheskikh grupp, Mir, M., 1974 ; J. A. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl | MR | Zbl

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham; Clarendon Press, Oxford, 1985 | MR | Zbl

[5] K. S. Braun, Kogomologii grupp, Nauka, M., 1987 ; K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl | MR | Zbl