The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1247-1260

Voir la notice de l'article provenant de la source Math-Net.Ru

The 2-cohomology group is determined for the finite simple orthogonal group $\Omega^-(4,q)$, where $q$ is odd, with coefficients in the natural module. For $q\ne9$ this group is trivial, and for $q=9$ it is isomorphic to $Z_3^4$. Thus Küsefoglu's result is corrected. Bibliography: 5 titles.
@article{SM_2007_198_9_a1,
     author = {V. P. Burichenko},
     title = {The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module},
     journal = {Sbornik. Mathematics},
     pages = {1247--1260},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/}
}
TY  - JOUR
AU  - V. P. Burichenko
TI  - The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1247
EP  - 1260
VL  - 198
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/
LA  - en
ID  - SM_2007_198_9_a1
ER  - 
%0 Journal Article
%A V. P. Burichenko
%T The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
%J Sbornik. Mathematics
%D 2007
%P 1247-1260
%V 198
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/
%G en
%F SM_2007_198_9_a1
V. P. Burichenko. The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1247-1260. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/