The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1247-1260
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The 2-cohomology group is determined for the finite simple orthogonal group $\Omega^-(4,q)$, where $q$ is odd, with coefficients in the natural module. For $q\ne9$ this group is trivial, and for $q=9$ it is isomorphic to $Z_3^4$. Thus Küsefoglu's result is corrected.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_2007_198_9_a1,
     author = {V. P. Burichenko},
     title = {The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module},
     journal = {Sbornik. Mathematics},
     pages = {1247--1260},
     publisher = {mathdoc},
     volume = {198},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/}
}
                      
                      
                    V. P. Burichenko. The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1247-1260. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a1/
