@article{SM_2007_198_9_a0,
author = {V. A. Artamonov},
title = {Semisimple finite-dimensional {Hopf} algebras},
journal = {Sbornik. Mathematics},
pages = {1221--1245},
year = {2007},
volume = {198},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_9_a0/}
}
V. A. Artamonov. Semisimple finite-dimensional Hopf algebras. Sbornik. Mathematics, Tome 198 (2007) no. 9, pp. 1221-1245. http://geodesic.mathdoc.fr/item/SM_2007_198_9_a0/
[1] S. Montgomery, Hopf algebras and their actions on rings, Published for the Conference Board of the Mathematical Sciences (University in Chicago, USA, 1992), CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[2] S. Montgomery, “Classifying finite-dimensional semisimple Hopf algebras”, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math., 229, Amer. Math. Soc., Providence, RI, 1998, 265–279 | MR | Zbl
[3] R. G. Larson, D. E. Radford, “Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple”, J. Algebra, 117:2 (1988), 267–289 | DOI | MR | Zbl
[4] H.-J. Schneider, Lectures on Hopf algebras, Trab. Mat., 31, Univ. Nacional de Córdoba, Córdoba, 1995 | MR | Zbl
[5] N. Andruskiewitsch, “About finite dimensional Hopf algebras”, Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math., 294, Amer. Math. Soc., Providence, RI, 2002, 1–57 | MR
[6] I. M. Isaacs, D. S. Passman, “A characterization of groups in terms of the degrees of their characters”, Pacific J. Math., 15:3 (1965), 877–903 | MR | Zbl
[7] G. Seitz, “Finite groups having only one irreducible representation of degree greater than one”, Proc. Amer. Math. Soc., 19:2 (1968), 459–461 | DOI | MR | Zbl
[8] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 ; R. S. Pierce, Associative algebras, Grad. Texts in Math., 88, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl | MR | Zbl
[9] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 ; Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York–London, 1962 | MR | MR | Zbl