Extension of the Hermitian $K$-theory functor
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1145-1163
A new construction of symmetric non-commutative signature of non-simply-connected topological manifolds is proposed based on the natural definition of homology and cohomology of a topological manifold using the singular chain and cochain complexes. Bibliography: 5 titles.
@article{SM_2007_198_8_a4,
author = {P. S. Popov},
title = {Extension of the {Hermitian} $K$-theory functor},
journal = {Sbornik. Mathematics},
pages = {1145--1163},
year = {2007},
volume = {198},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/}
}
P. S. Popov. Extension of the Hermitian $K$-theory functor. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1145-1163. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/
[1] E. H. Spanier, Algebraic topology, McGraw-Hill, New York–Toronto, ON–London, 1966 | MR | Zbl
[2] A. S. Mischenko, “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. I. Ratsionalnye invarianty”, Izv. AN CCCR. Cer. matem., 34:3 (1970), 501–514 | MR | Zbl
[3] A. S. Mischenko, “Perestroiki kompleksov Puankare”, Matem. sb., 85(127):3(7) (1971), 366–372 | MR | Zbl
[4] A. S. Mishchenko, P. S. Popov, “On construction of signature of quadratic forms on infinite-dimensional abstract spaces”, Georgian Math. J., 9:4 (2002), 775–785 | MR | Zbl
[5] P. S. Popov, “Signatura beskonechnomernykh otobrazhenii”, Trudy 25 konferentsii molodykh uchenykh MGU, 2003, 52–54