Extension of the Hermitian $K$-theory functor
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1145-1163
Voir la notice de l'article provenant de la source Math-Net.Ru
A new construction of symmetric non-commutative signature of non-simply-connected topological manifolds is proposed based on the natural definition of homology and cohomology of a topological manifold using the singular chain and cochain complexes.
Bibliography: 5 titles.
@article{SM_2007_198_8_a4,
author = {P. S. Popov},
title = {Extension of the {Hermitian} $K$-theory functor},
journal = {Sbornik. Mathematics},
pages = {1145--1163},
publisher = {mathdoc},
volume = {198},
number = {8},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/}
}
P. S. Popov. Extension of the Hermitian $K$-theory functor. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1145-1163. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/