Extension of the Hermitian $K$-theory functor
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1145-1163

Voir la notice de l'article provenant de la source Math-Net.Ru

A new construction of symmetric non-commutative signature of non-simply-connected topological manifolds is proposed based on the natural definition of homology and cohomology of a topological manifold using the singular chain and cochain complexes. Bibliography: 5 titles.
@article{SM_2007_198_8_a4,
     author = {P. S. Popov},
     title = {Extension of the {Hermitian} $K$-theory functor},
     journal = {Sbornik. Mathematics},
     pages = {1145--1163},
     publisher = {mathdoc},
     volume = {198},
     number = {8},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/}
}
TY  - JOUR
AU  - P. S. Popov
TI  - Extension of the Hermitian $K$-theory functor
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1145
EP  - 1163
VL  - 198
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/
LA  - en
ID  - SM_2007_198_8_a4
ER  - 
%0 Journal Article
%A P. S. Popov
%T Extension of the Hermitian $K$-theory functor
%J Sbornik. Mathematics
%D 2007
%P 1145-1163
%V 198
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/
%G en
%F SM_2007_198_8_a4
P. S. Popov. Extension of the Hermitian $K$-theory functor. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1145-1163. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a4/