Lengths of lemniscates. Variations of rational functions
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1111-1117

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem under consideration is the estimate of the length of the lemniscate $$ L(P,r)=\{z:|P(z)|=r^n\}, $$ where $$ P(z)=\prod_{k=1}^{n}(z-z_k),\qquad z_k\in\mathbb C,\quad r>0. $$ It is shown that $|L(P,r)|\le 2\pi n r$. A sharp estimate for the variation of a rational function along a curve of bounded rotation of the secant is also obtained. Bibliography: 15 titles.
@article{SM_2007_198_8_a2,
     author = {V. I. Danchenko},
     title = {Lengths of lemniscates. {Variations} of rational functions},
     journal = {Sbornik. Mathematics},
     pages = {1111--1117},
     publisher = {mathdoc},
     volume = {198},
     number = {8},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Lengths of lemniscates. Variations of rational functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1111
EP  - 1117
VL  - 198
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/
LA  - en
ID  - SM_2007_198_8_a2
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Lengths of lemniscates. Variations of rational functions
%J Sbornik. Mathematics
%D 2007
%P 1111-1117
%V 198
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/
%G en
%F SM_2007_198_8_a2
V. I. Danchenko. Lengths of lemniscates. Variations of rational functions. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1111-1117. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/