Lengths of lemniscates. Variations of rational functions
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1111-1117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem under consideration is the estimate of the length of the lemniscate $$ L(P,r)=\{z:|P(z)|=r^n\}, $$ where $$ P(z)=\prod_{k=1}^{n}(z-z_k),\qquad z_k\in\mathbb C,\quad r>0. $$ It is shown that $|L(P,r)|\le 2\pi n r$. A sharp estimate for the variation of a rational function along a curve of bounded rotation of the secant is also obtained. Bibliography: 15 titles.
@article{SM_2007_198_8_a2,
     author = {V. I. Danchenko},
     title = {Lengths of lemniscates. {Variations} of rational functions},
     journal = {Sbornik. Mathematics},
     pages = {1111--1117},
     year = {2007},
     volume = {198},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Lengths of lemniscates. Variations of rational functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1111
EP  - 1117
VL  - 198
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/
LA  - en
ID  - SM_2007_198_8_a2
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Lengths of lemniscates. Variations of rational functions
%J Sbornik. Mathematics
%D 2007
%P 1111-1117
%V 198
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/
%G en
%F SM_2007_198_8_a2
V. I. Danchenko. Lengths of lemniscates. Variations of rational functions. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1111-1117. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a2/

[1] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 ; J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc., Providence, RI, 1960 | MR | Zbl | MR | Zbl

[2] P. Erdős, F. Herzog, G. Piranian, “Metric properties of polynomials”, J. Analyse Math., 6 (1958), 125–148 | DOI | MR | Zbl

[3] E. P. Dolzhenko, Differentsialnye svoistva funktsii i nekotorye voprosy teorii priblizhenii, Diss. ... kand. fiz.-matem. nauk, Izd-vo MGU, M., 1960

[4] E. P. Dolzhenko, “Nekotorye metricheskie svoistva algebraicheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 241–252 | MR | Zbl

[5] Ch. Pommerenke, “On metric properties of complex polynomials”, Michigan Math. J., 8:2 (1961), 97–115 | DOI | MR | Zbl

[6] P. Erdős, “Extremal problems on polynomials”, Approximation theory. II, Proc. Internat. Sympos. (Univ. Texas, Austin, TX, 1976), Academic Press, New York, 1976, 347–355 | MR | Zbl

[7] P. Borwein, “The arc length of the lemniscate $\{|p(z)|=1\}$”, Proc. Amer. Math. Soc., 123:3 (1995), 797–799 | DOI | MR | Zbl

[8] A. Eremenko, W. Hayman, “On the length of lemniscates”, Michigan Math. J., 46:2 (1999), 409–415 | DOI | MR | Zbl

[9] C. Wang, L. Peng, “The arc length of the lemniscate $|w^n+c|=1$”, Rocky Mountain J. Math., 36:1 (2006), 337–347 | DOI | MR | Zbl

[10] I. I. Danilyuk, Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR | Zbl

[11] V. I. Danchenko, Neravenstva dlya ratsionalnykh funktsii, Diss. ... kand. fiz.-matem. nauk., Izd-vo MGU, M., 1985

[12] T. Gamelin, Ravnomernye algebry, Mir, M., 1973 ; T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | Zbl | MR | Zbl

[13] V. I. Danchenko, “Ob otsenkakh norm i variatsii ratsionalnykh sostavlyayuschikh meromorfnykh funktsii”, DAN SSSR, 280:5 (1985), 1043–1046 | MR | Zbl

[14] V. I. Danchenko, “Ob otsenke variatsii ratsionalnykh funktsii na spryamlyaemykh krivykh”, Trudy 2-i Saratovskoi zimnei shkoly. Chast I (Saratov, 1984), Izd. Saratov. un-ta, Saratov, 1986, 121–124 | MR

[15] E. P. Dolzhenko, “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh i algebraicheskikh funktsii. Prilozheniya”, Anal. Math., 4:4 (1978), 247–268 | DOI | MR | Zbl