Inverse operator of the generator of a~$C_0$-semigroup
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1095-1110

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be the generator of a uniformly bounded $C_0$-semigroup in a Banach space $X$ such that $A$ has a trivial kernel and a dense range. The question whether $A^{-1}$ is a generator of a $C_0$-semigroup is considered. It is shown that the answer is negative in general for $X=\ell^p$, $p\in(1,2)\cup(2,\infty)$. In the case when $X$ is a Hilbert space it is proved that there exist $C_0$-semigroups $(e^{tA})$, $t\geqslant0$, of arbitrarily slow growth at infinity such that the densely defined operator $A^{-1}$ is not the generator of a $C_0$-semigroup. Bibliography: 19 titles.
@article{SM_2007_198_8_a1,
     author = {A. M. Gomilko and H. Zwart and Yu. Tomilov},
     title = {Inverse operator of the generator of a~$C_0$-semigroup},
     journal = {Sbornik. Mathematics},
     pages = {1095--1110},
     publisher = {mathdoc},
     volume = {198},
     number = {8},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/}
}
TY  - JOUR
AU  - A. M. Gomilko
AU  - H. Zwart
AU  - Yu. Tomilov
TI  - Inverse operator of the generator of a~$C_0$-semigroup
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1095
EP  - 1110
VL  - 198
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/
LA  - en
ID  - SM_2007_198_8_a1
ER  - 
%0 Journal Article
%A A. M. Gomilko
%A H. Zwart
%A Yu. Tomilov
%T Inverse operator of the generator of a~$C_0$-semigroup
%J Sbornik. Mathematics
%D 2007
%P 1095-1110
%V 198
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/
%G en
%F SM_2007_198_8_a1
A. M. Gomilko; H. Zwart; Yu. Tomilov. Inverse operator of the generator of a~$C_0$-semigroup. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1095-1110. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/