Inverse operator of the generator of a $C_0$-semigroup
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1095-1110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be the generator of a uniformly bounded $C_0$-semigroup in a Banach space $X$ such that $A$ has a trivial kernel and a dense range. The question whether $A^{-1}$ is a generator of a $C_0$-semigroup is considered. It is shown that the answer is negative in general for $X=\ell^p$, $p\in(1,2)\cup(2,\infty)$. In the case when $X$ is a Hilbert space it is proved that there exist $C_0$-semigroups $(e^{tA})$, $t\geqslant0$, of arbitrarily slow growth at infinity such that the densely defined operator $A^{-1}$ is not the generator of a $C_0$-semigroup. Bibliography: 19 titles.
@article{SM_2007_198_8_a1,
     author = {A. M. Gomilko and H. Zwart and Yu. Tomilov},
     title = {Inverse operator of the generator of a~$C_0$-semigroup},
     journal = {Sbornik. Mathematics},
     pages = {1095--1110},
     year = {2007},
     volume = {198},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/}
}
TY  - JOUR
AU  - A. M. Gomilko
AU  - H. Zwart
AU  - Yu. Tomilov
TI  - Inverse operator of the generator of a $C_0$-semigroup
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1095
EP  - 1110
VL  - 198
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/
LA  - en
ID  - SM_2007_198_8_a1
ER  - 
%0 Journal Article
%A A. M. Gomilko
%A H. Zwart
%A Yu. Tomilov
%T Inverse operator of the generator of a $C_0$-semigroup
%J Sbornik. Mathematics
%D 2007
%P 1095-1110
%V 198
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/
%G en
%F SM_2007_198_8_a1
A. M. Gomilko; H. Zwart; Yu. Tomilov. Inverse operator of the generator of a $C_0$-semigroup. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1095-1110. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/

[1] N. Danford, Dzh. Shvarts, Lineinye operatory. Chast I. Obschaya teoriya, IL, M., 1962 ; N. Dunford, J. T. Schwartz, Linear operators. I. General theory, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 ; T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | Zbl | MR | Zbl

[3] R. DeLaubenfels, “Inverses of generators”, Proc. Amer. Math. Soc., 104:2 (1988), 443–448 | DOI | MR | Zbl

[4] A. M. Gomilko, “Ob obratnom operatore generatora ogranichennoi $C_0$-polugruppy”, Funkts. analiz i ego pril., 38:4 (2004), 6–12 | MR | Zbl

[5] H. Komatsu, “Fractional powers of operators”, Pacific J. Math., 19:2 (1966), 285–346 | MR | Zbl

[6] H. Zwart, “Is $A^{-1}$ an infinitesimal generator?”, Perspectives in operator theory, Papers of the workshop on operator theory (Warsaw, 2004), 2007, 303–313 | MR | Zbl

[7] P. L. Butzer, U. Westphal, “On the Cayley transform and semigroup operators”, Hilbert space operators and operator algebras, Proc. Internat. Conf. (Tihany, 1970), North-Holland, Amsterdam, 1972, 89–97 | MR | Zbl

[8] B. Z. Guo, H. Zwart, “On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform”, Integral Equations Operator Theory, 54:3 (2006), 349–383 | DOI | MR | Zbl

[9] A. M. Gomilko, “Preobrazovanie Keli generatora ravnomerno ogranichennoi $C_0$-polugrupp operatorov”, Ukr. matem. zhurn., 56:8 (2004), 1018–1029 | MR | Zbl

[10] T. Ya. Azizov, A. I. Barsukov, A. Dijksma, “Decompositions of a Krein space in regular subspaces invariant under a uniformly bounded $C_0$-semigroup of bi-contractions”, J. Funct. Anal., 211:2 (2004), 324–354 | DOI | MR | Zbl

[11] J. A. Goldstein, Semigroups of linear operators and applications, Oxford Math. Monogr., Oxford Univ. Press, New York; Clarendon Press, Oxford, 1985 | MR | Zbl

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1966 ; A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | Zbl | MR | Zbl

[13] R. F. Curtain, H. Zwart, An introduction to infinite-dimensional linear systems theory, Texts Appl. Math., 21, Springer-Verlag, New York, 1995 | MR | Zbl

[14] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 ; G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | Zbl | MR | Zbl

[15] S. Bochner, K. Chandrasekharan, Fourier transforms, Ann. of Math. Stud., 19, Princeton Univ. Press, Princeton, NJ; Oxford Univ. Press, London, 1949 | MR | Zbl

[16] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 1. Struktura topologicheskikh grupp Teoriya integrirovaniya. Predstvleniya grupp, Nauka, M., 1975 ; E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | MR | Zbl

[17] B. Sëkefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 ; B. Szőkefalvi-Nagy, C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, Paris; Akad. Kiadó, Budapest, 1967 | MR | Zbl | MR | Zbl

[18] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl

[19] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 ; J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl