Inverse operator of the generator of a~$C_0$-semigroup
Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1095-1110
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be the generator of a uniformly bounded $C_0$-semigroup in a Banach space $X$ such that $A$ has a trivial kernel and a dense range. The question whether $A^{-1}$ is a generator of a $C_0$-semigroup is considered. It is shown that the answer is negative in general for $X=\ell^p$, $p\in(1,2)\cup(2,\infty)$. In the case when $X$ is a Hilbert space it is proved that there exist $C_0$-semigroups $(e^{tA})$, $t\geqslant0$, of arbitrarily slow growth at infinity such that the densely defined operator $A^{-1}$ is not the generator of a $C_0$-semigroup.
Bibliography: 19 titles.
@article{SM_2007_198_8_a1,
author = {A. M. Gomilko and H. Zwart and Yu. Tomilov},
title = {Inverse operator of the generator of a~$C_0$-semigroup},
journal = {Sbornik. Mathematics},
pages = {1095--1110},
publisher = {mathdoc},
volume = {198},
number = {8},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/}
}
A. M. Gomilko; H. Zwart; Yu. Tomilov. Inverse operator of the generator of a~$C_0$-semigroup. Sbornik. Mathematics, Tome 198 (2007) no. 8, pp. 1095-1110. http://geodesic.mathdoc.fr/item/SM_2007_198_8_a1/