Moments of solutions of evolution equations and suboptimal programmed
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1025-1062 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Moments of solutions of non-linear differential equations subjected to random perturbations satisfy infinite systems of equations that do not contain finite closed subsystems. One of the methods for approximate solution of such infinite systems consists in replacing them by finite systems obtained from the original one as a result of equating to zero all the moments of sufficiently high order. It is shown that the moments of solutions of a wide class of ordinary differential equations, as well as of certain classes of partial differential equations, are approximated by solutions of those finite systems. The results obtained are used for constructing suboptimal programmed controls of dynamical systems with random parameters. Bibliography: 10 titles.
@article{SM_2007_198_7_a6,
     author = {D. A. Khrychev},
     title = {Moments of solutions of evolution equations and suboptimal programmed},
     journal = {Sbornik. Mathematics},
     pages = {1025--1062},
     year = {2007},
     volume = {198},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a6/}
}
TY  - JOUR
AU  - D. A. Khrychev
TI  - Moments of solutions of evolution equations and suboptimal programmed
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1025
EP  - 1062
VL  - 198
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_7_a6/
LA  - en
ID  - SM_2007_198_7_a6
ER  - 
%0 Journal Article
%A D. A. Khrychev
%T Moments of solutions of evolution equations and suboptimal programmed
%J Sbornik. Mathematics
%D 2007
%P 1025-1062
%V 198
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2007_198_7_a6/
%G en
%F SM_2007_198_7_a6
D. A. Khrychev. Moments of solutions of evolution equations and suboptimal programmed. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1025-1062. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a6/

[1] M. I. Vishik, A. V. Fursikov, Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 ; M. J. Višik, A. V. Fursikov, Mathematische Probleme der statistischen Hydromechanik, Math. Anwendungen Phys. Tech., 41, Akademische, Leipzig, 1986 | MR | Zbl | MR | Zbl

[2] D. A. Khrychëv, “O priblizhennom reshenii sistem momentnykh uravnenii”, Matem. sb., 126(168):1 (1985), 83–100 ; D. A. Khrychev, “On approximate solution of systems of moment equations”, Math. USSR-Sb., 54:1 (1986), 81–98 | MR | Zbl | DOI

[3] D. A. Khrychëv, “Optimalnoe programmnoe upravlenie: suschestvovanie i approksimatsiya”, Matem. sb., 192:5 (2001), 125–144 | MR | Zbl

[4] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004; A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[5] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 ; M. M. Vaǐnberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Noordhoff International Publ., Leyden, 1974 | MR | Zbl | MR | Zbl

[6] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 ; K. Yosida, Functional analysis, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965 | MR | Zbl | MR | Zbl

[7] A. Douady, “Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 1–95 | MR | Zbl

[8] S. B. Kuksin, “Diffeomorfizmy funktsionalnykh prostranstv, otvechayuschie kvazilineinym parabolicheskim uravneniyam”, Matem. sb., 117(159):3 (1982), 359–378 ; S. B. Kuksin, “Diffeomorphisms of function spaces corresponding to quasilinear parabolic equations”, Math. USSR-Sb., 45:3 (1983), 359–378 | MR | Zbl | DOI | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 ; O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl

[10] S. B. Kuksin, Zavisimost ot nachalnykh uslovii reshenii nelineinykh evolyutsionnykh uravnenii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1980