Pad\'e approximants of the Mittag-Leffler functions
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1011-1023

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for $m\le n$ the Padé approximants $\{\pi_{n,m}(\,\cdot\,;F_{\gamma})\}$, which locally deliver the best rational approximations to the Mittag-Leffler functions $F_\gamma$, approximate the $F_\gamma$ as $n\to\infty$ uniformly on the compact set $D=\{z:|z|\le1\}$ at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of $\exp{z}$ are proved for the Mittag-Leffler functions. Bibliography: 28 titles.
@article{SM_2007_198_7_a5,
     author = {A. P. Starovoitov and N. A. Starovoitova},
     title = {Pad\'e approximants of the {Mittag-Leffler} functions},
     journal = {Sbornik. Mathematics},
     pages = {1011--1023},
     publisher = {mathdoc},
     volume = {198},
     number = {7},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. A. Starovoitova
TI  - Pad\'e approximants of the Mittag-Leffler functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1011
EP  - 1023
VL  - 198
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/
LA  - en
ID  - SM_2007_198_7_a5
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. A. Starovoitova
%T Pad\'e approximants of the Mittag-Leffler functions
%J Sbornik. Mathematics
%D 2007
%P 1011-1023
%V 198
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/
%G en
%F SM_2007_198_7_a5
A. P. Starovoitov; N. A. Starovoitova. Pad\'e approximants of the Mittag-Leffler functions. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1011-1023. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/