Pad\'e approximants of the Mittag-Leffler functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1011-1023
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that for $m\le n$ the Padé approximants
$\{\pi_{n,m}(\,\cdot\,;F_{\gamma})\}$, which locally deliver the best rational
approximations to the Mittag-Leffler functions $F_\gamma$, approximate 
the $F_\gamma$ as $n\to\infty$ uniformly on the compact set 
$D=\{z:|z|\le1\}$ at a rate asymptotically
equal to the best possible one. In particular, analogues of the well-known
results of Braess and Trefethen relating to the approximation of $\exp{z}$
are proved for the Mittag-Leffler functions.
Bibliography: 28 titles.
			
            
            
            
          
        
      @article{SM_2007_198_7_a5,
     author = {A. P. Starovoitov and N. A. Starovoitova},
     title = {Pad\'e approximants of the {Mittag-Leffler} functions},
     journal = {Sbornik. Mathematics},
     pages = {1011--1023},
     publisher = {mathdoc},
     volume = {198},
     number = {7},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/}
}
                      
                      
                    A. P. Starovoitov; N. A. Starovoitova. Pad\'e approximants of the Mittag-Leffler functions. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1011-1023. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/
