Padé approximants of the Mittag-Leffler functions
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1011-1023 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for $m\le n$ the Padé approximants $\{\pi_{n,m}(\,\cdot\,;F_{\gamma})\}$, which locally deliver the best rational approximations to the Mittag-Leffler functions $F_\gamma$, approximate the $F_\gamma$ as $n\to\infty$ uniformly on the compact set $D=\{z:|z|\le1\}$ at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of $\exp{z}$ are proved for the Mittag-Leffler functions. Bibliography: 28 titles.
@article{SM_2007_198_7_a5,
     author = {A. P. Starovoitov and N. A. Starovoitova},
     title = {Pad\'e approximants of the {Mittag-Leffler} functions},
     journal = {Sbornik. Mathematics},
     pages = {1011--1023},
     year = {2007},
     volume = {198},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. A. Starovoitova
TI  - Padé approximants of the Mittag-Leffler functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1011
EP  - 1023
VL  - 198
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/
LA  - en
ID  - SM_2007_198_7_a5
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. A. Starovoitova
%T Padé approximants of the Mittag-Leffler functions
%J Sbornik. Mathematics
%D 2007
%P 1011-1023
%V 198
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/
%G en
%F SM_2007_198_7_a5
A. P. Starovoitov; N. A. Starovoitova. Padé approximants of the Mittag-Leffler functions. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 1011-1023. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a5/

[1] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 ; A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, Vol. 1. Elementary functions, Gordon Breach Science Publ., New York, 1986 | MR | Zbl | MR | Zbl

[2] H. Padé, “Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d'introduction à la théorie des fractions continues algébriques”, Ann. Sci. École Norm. Sup. (3), 16 (1899), 395–426 | MR | Zbl

[3] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, t. 1. Arifmetika, algebra, analiz, GTTI, M.–L., 1933 ; F. Klein, Elementarmathematik vom höheren Standpunkte aus Erster Band, Arithmetik, Algebra, Analysis, Springer-Verlag, Berlin, 1924 | MR | Zbl | MR | Zbl

[4] E. B. Saff, “The convergence of rational functions of best approximation to the exponential function. II”, Proc. Amer. Math. Soc., 32:1 (1972), 187–194 | DOI | MR | Zbl

[5] E. B. Saff, “On the degree of best rational approximation to the exponential function”, J. Approximation Theory, 9:2 (1973), 97–101 | DOI | MR | Zbl

[6] D. S. Lubinsky, “Padé tables of entire functions of very slow and smooth growth, II”, Constr. Approx., 4:1 (1988), 321–339 | DOI | MR | Zbl

[7] A. L. Levin, D. S. Lubinsky, “Rows and diagonals of the Walsh array for entire functions with smooth Maclaurin series coefficients”, Constr. Approx., 6:3 (1990), 257–286 | DOI | MR | Zbl

[8] L. L. Berezkina, V. N. Rusak, “O nailuchshikh ratsionalnykh approksimatsiyakh nekotorykh tselykh funktsii”, Izv. AN BSSR, 1990, no. 4, 27–32 | MR | Zbl

[9] V. N. Rusak, Ta Khong Kuang, “Asimptotika parabolicheskikh zvenev ratsionalnoi tablitsy Chebysheva dlya analiticheskikh funktsii”, Dokl. AN BSSR, 34:10 (1990), 869–871 | MR | Zbl

[10] V. N. Rusak, A. P. Starovoitov, “Approksimatsii Pade dlya tselykh funktsii s regulyarno ubyvayuschimi koeffitsientami Teilora”, Matem. sb., 193:9 (2002), 63–92 | MR | Zbl

[11] A. L. Levin, D. S. Lubinsky, “Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly”, Trans. Amer. Math. Soc., 293:2 (1986), 533–545 | DOI | MR | Zbl

[12] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx.Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[13] P. P. Petrushev, V. A. Popov, Rational approximation of real functions, Encyclopedia Math. Appl., 28, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[14] G. G. Lorentz, M. von Golitschek, Yu. Makovoz, Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl

[15] O. Perron, Die Lehre von den Kettenbrüchen. Band II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner, Stuttgart, 1957 | MR | Zbl

[16] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 ; E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl

[17] L. N. Trefethen, “The asymptotic accuracy of rational best approximations to $e^z$ on a disk”, J. Approx. Theory, 40:4 (1984), 380–383 | DOI | MR | Zbl

[18] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, 1. Osnovy teorii. 2. Obobscheniya i prilozheniya, Mir, M., 1986 ; G. A. Baker, jr., P. Graves-Morris, Padé approximants. Part I, Basic theory, Encyclopedia Math. Appl., 13, Addison-Wesley Publ., Reading, Mass., 1981 ; Padé approximants. Part II, Extensions and applications, Encyclopedia Math. Appl., 14, Addison-Wesley Publ., Reading, Mass., 1981 | MR | Zbl | MR | Zbl | MR | Zbl

[19] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 ; A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | MR | Zbl | DOI | Zbl

[20] A. I. Aptekarev, “Tochnye konstanty ratsionalnykh approksimatsii analiticheskikh funktsii”, Matem. sb., 193:1 (2002), 3–72 | MR | Zbl

[21] R. S. Varga, Topics in polynomial and rational interpolation and approximation, Sem. Math. Sup., 81, Les Presses de l'Université de Montréal, Montreal, QC, 1982 | MR | Zbl

[22] R. S. Varga, “Scientific computation on some mathematical conjectures”, Approximation theory, V (Proc. 5th Int. Symp., College Station, Tex., 1986), Academic Press, Boston, MA, 1986, 191–209 | MR | Zbl

[23] L. N. Trefethen, M. H. Gutknecht, “The Carathéodory–Fejér method for real rational approximation”, SIAM J. Numer. Anal., 20:2 (1983), 420–436 | DOI | MR | Zbl

[24] A. I. Aptekarev, “Asimptotika opredelitelei Adamara i skhodimost strok approksimatsii Pade dlya summy eksponent”, Matem. sb., 113(155):4(12) (1980), 520–537 ; A. I. Aptekarev, “Asymptotics of Hadamard determinants and the convergence of rows of Padé approximants for sums of exponentials”, Math. USSR-Sb., 41:4 (1982), 427–441 | MR | Zbl | DOI | Zbl

[25] A. P. Starovoitov, N. A. Starovoitova, “Asimptotika opredelitelei Adamara i povedenie strok tablits Pade i Chebysheva dlya summy eksponent”, Matem. sb., 187:2 (1996), 141–157 | MR | Zbl

[26] F. Wielonsky, “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function”, J. Approx. Theory, 131:1 (2004), 100–148 | DOI | MR | Zbl

[27] V. K. Dzyadyk, “Ob asimptotike diagonalnykh approksimatsii Pade funktsii $\sin z$, $\cos z$, $\operatorname{sh} z$ i $\operatorname{ch} z$”, Matem. sb., 108(150):2 (1979), 247–267 ; V. K. Dzjadyk, “On the asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$, $\operatorname{sinh} z$ and $\operatorname{cosh} z$”, Math. USSR-Sb., 36:2 (1980), 231–249 | MR | Zbl | DOI | Zbl

[28] A. P. Starovoitov, N. A. Starovoitova, “Approksimatsii Pade odnogo klassa tselykh funktsii”, Doklady NAN Belarusi, 50:6 (2006), 28–30 | MR