A class of integral equations of convolution type
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 949-966
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions (both necessary and sufficient)
for the existence of a non-trivial bounded solution $B$ of the integral equation
$$
B(x)=\int_{-\infty}^{+\infty}\lambda(t)K(x-t)B(t)\,dt,\qquad x\in \mathbb R^1,
$$ 
are obtained for
fixed functions $K$ and $\lambda$ satisfying the following conditions:
\begin{gather*}
0\le K\in L_1(\mathbb R^1),
\qquad
\int_{-\infty}^\infty K(t)\,dt=1,
\\
\int_{-\infty}^\infty t^2K(t)\,dt\infty,
\qquad
\nu\stackrel{\mathrm{def}}{=}\int_{-\infty}^{+\infty}tK(t)\,dt\ne0,
\\
0\le\lambda(x)\le1,
\qquad
x\in \mathbb R^1,
\qquad
\lambda\not\equiv0.
\end{gather*}
The existence of the limits
$B(\pm\infty)=\lim_{x\to\pm\infty}B(x)$ is proved and a relation
between these limits, the first-order moment $\nu$, and
the integral norm of $B$ is found.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_2007_198_7_a2,
     author = {L. G. Arabadzhyan and A. S. Khachatryan},
     title = {A class of integral equations of convolution type},
     journal = {Sbornik. Mathematics},
     pages = {949--966},
     publisher = {mathdoc},
     volume = {198},
     number = {7},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a2/}
}
                      
                      
                    L. G. Arabadzhyan; A. S. Khachatryan. A class of integral equations of convolution type. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 949-966. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a2/
