A class of integral equations of convolution type
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 949-966 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions (both necessary and sufficient) for the existence of a non-trivial bounded solution $B$ of the integral equation $$ B(x)=\int_{-\infty}^{+\infty}\lambda(t)K(x-t)B(t)\,dt,\qquad x\in \mathbb R^1, $$ are obtained for fixed functions $K$ and $\lambda$ satisfying the following conditions: \begin{gather*} 0\le K\in L_1(\mathbb R^1), \qquad \int_{-\infty}^\infty K(t)\,dt=1, \\ \int_{-\infty}^\infty t^2K(t)\,dt<\infty, \qquad \nu\stackrel{\mathrm{def}}{=}\int_{-\infty}^{+\infty}tK(t)\,dt\ne0, \\ 0\le\lambda(x)\le1, \qquad x\in \mathbb R^1, \qquad \lambda\not\equiv0. \end{gather*} The existence of the limits $B(\pm\infty)=\lim_{x\to\pm\infty}B(x)$ is proved and a relation between these limits, the first-order moment $\nu$, and the integral norm of $B$ is found. Bibliography: 9 titles.
@article{SM_2007_198_7_a2,
     author = {L. G. Arabadzhyan and A. S. Khachatryan},
     title = {A class of integral equations of convolution type},
     journal = {Sbornik. Mathematics},
     pages = {949--966},
     year = {2007},
     volume = {198},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a2/}
}
TY  - JOUR
AU  - L. G. Arabadzhyan
AU  - A. S. Khachatryan
TI  - A class of integral equations of convolution type
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 949
EP  - 966
VL  - 198
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_7_a2/
LA  - en
ID  - SM_2007_198_7_a2
ER  - 
%0 Journal Article
%A L. G. Arabadzhyan
%A A. S. Khachatryan
%T A class of integral equations of convolution type
%J Sbornik. Mathematics
%D 2007
%P 949-966
%V 198
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2007_198_7_a2/
%G en
%F SM_2007_198_7_a2
L. G. Arabadzhyan; A. S. Khachatryan. A class of integral equations of convolution type. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 949-966. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a2/

[1] M. Slater, H. S. Wilf, “A class of linear differential-difference equations”, Pacific J. Math., 10:4 (1960), 1419–1427 | MR | Zbl

[2] R. Bellman, K. L. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967 ; R. Bellman, K. L. Cooke, Differential-difference equations, Academic Press, New York–London, 1963 | MR | Zbl | MR | Zbl

[3] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 ; J. Hale, Theory of functional differential equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl

[4] L. G. Arabadzhyan, “Ob odnom integralnom uravnenii teorii perenosa v neodnorodnoi srede”, Differents. uravneniya, 23:9 (1987), 1618–1622 | MR | Zbl

[5] N. B. Engibaryan, A. A. Arutyunyan, “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97(139):1(5) (1975), 35–58 | MR | Zbl

[6] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Sovrem. problemy matem. Matem. analiz., 22, VINITI, M., 1984, 175–244 | MR | Zbl

[7] N. B. Yengibarian, “Renewal equation on the whole line”, Stochastic Process. Appl., 85:2 (2000), 237–247 | DOI | MR | Zbl

[8] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 ; W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl

[9] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 5 izd., Nauka, M., 1981 ; A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, New York, Dover Publ., 1975 | MR | Zbl | MR | Zbl