Splittability of $p$-ary functions
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 935-947

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $\varphi$ from an $n$-dimensional vector space $V$ over a field $F$ of $p$ elements (where $p$ is a prime) into $F$ is called splittable if $\varphi(u+w)=\psi(u)+\chi(w)$, $u\in U$, $w\in W$, for some non-trivial subspaces $U$ and $W$ such that $U\oplus W=V$ and for some functions $\psi\colon U\to F$ and $\chi\colon W\to F$. It is explained how one can verify in time polynomial in $\log p^{p^n}$ whether a function is splittable and, if it is, find a representation of it in the above-described form. Other questions relating to the splittability of functions are considered. Bibliography: 3 titles.
@article{SM_2007_198_7_a1,
     author = {M. I. Anokhin},
     title = {Splittability of $p$-ary functions},
     journal = {Sbornik. Mathematics},
     pages = {935--947},
     publisher = {mathdoc},
     volume = {198},
     number = {7},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a1/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - Splittability of $p$-ary functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 935
EP  - 947
VL  - 198
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_7_a1/
LA  - en
ID  - SM_2007_198_7_a1
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T Splittability of $p$-ary functions
%J Sbornik. Mathematics
%D 2007
%P 935-947
%V 198
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_7_a1/
%G en
%F SM_2007_198_7_a1
M. I. Anokhin. Splittability of $p$-ary functions. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 935-947. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a1/