Splittability of $p$-ary functions
Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 935-947
Cet article a éte moissonné depuis la source Math-Net.Ru
A function $\varphi$ from an $n$-dimensional vector space $V$ over a field $F$ of $p$ elements (where $p$ is a prime) into $F$ is called splittable if $\varphi(u+w)=\psi(u)+\chi(w)$, $u\in U$, $w\in W$, for some non-trivial subspaces $U$ and $W$ such that $U\oplus W=V$ and for some functions $\psi\colon U\to F$ and $\chi\colon W\to F$. It is explained how one can verify in time polynomial in $\log p^{p^n}$ whether a function is splittable and, if it is, find a representation of it in the above-described form. Other questions relating to the splittability of functions are considered. Bibliography: 3 titles.
@article{SM_2007_198_7_a1,
author = {M. I. Anokhin},
title = {Splittability of $p$-ary functions},
journal = {Sbornik. Mathematics},
pages = {935--947},
year = {2007},
volume = {198},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_7_a1/}
}
M. I. Anokhin. Splittability of $p$-ary functions. Sbornik. Mathematics, Tome 198 (2007) no. 7, pp. 935-947. http://geodesic.mathdoc.fr/item/SM_2007_198_7_a1/
[1] O. A. Logachev, A. A. Salnikov, V. V. Yaschenko, Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004 | MR | Zbl
[2] M. I. Anokhin, “O rasscheplyaemosti $p$-ichnykh funktsii”, Tezisy dokladov XIV Mezhdunarodnoi konferentsii “Problemy teoreticheskoi kibernetiki” (Penza, 2005), Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 2005, 12
[3] O. A. Logachev, A. A. Salnikov, V. V. Yaschenko, “Nekotorye kharakteristiki “nelineinosti” gruppovykh otobrazhenii”, Diskret. analiz i issledovanie operatsii, 8:1 (2001), 40–54 | MR | Zbl