Trace formulae for a class of Jacobi operators
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 857-885 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class of Jacobi operators generated by unit Borel measures with support formed by finitely many intervals of the real line $\mathbb R$ and finitely many points in $\mathbb R$ lying outside the convex hull of these intervals is investigated. An asymptotic formula for the diagonal Green's function in this class is obtained as well as the trace formulae for sequences $a,b\in\ell^\infty(\mathbb N)$ corresponding to a fixed operator. Bibliography: 39 titles.
@article{SM_2007_198_6_a5,
     author = {S. P. Suetin},
     title = {Trace formulae for a~class of {Jacobi} operators},
     journal = {Sbornik. Mathematics},
     pages = {857--885},
     year = {2007},
     volume = {198},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a5/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Trace formulae for a class of Jacobi operators
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 857
EP  - 885
VL  - 198
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_6_a5/
LA  - en
ID  - SM_2007_198_6_a5
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Trace formulae for a class of Jacobi operators
%J Sbornik. Mathematics
%D 2007
%P 857-885
%V 198
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2007_198_6_a5/
%G en
%F SM_2007_198_6_a5
S. P. Suetin. Trace formulae for a class of Jacobi operators. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 857-885. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a5/

[1] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 ; N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publ. Co., New York; Oliver Boyd, Edinburgh–London, 1965 | MR | Zbl | MR | Zbl

[2] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 ; E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl

[3] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl

[4] P. L. Chebyshëv, “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. Akademii Nauk, III (1855), 636–664; P. Tchébycheff, “Sur les fractions continues”, Journ. de Math. Pures et Appl. Sér. 2, 3 (1858), 289–323; “О непрерывных дробях”, Полное собрание сочинений, т. II, Изд-во АН СССР, М., Л., 1947, 103–126 | MR

[5] N. I. Akhiezer, “Chebyshëvskoe napravlenie v teorii funktsii”, Matematika XIX veka, eds. A. N. Kolmogorov, A. P. Yushkevich, Nauka, M., 1987, 9–79 | MR | Zbl

[6] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 ; А. А. Марков, “Два доказательства сходимости некоторых непрерывных дробей”, Избранные труды по теории непрерывных дробей и теории функций, наименее уклоняющихся от нуля, Гостехиздат, М.–Л., 1948, 106–119 | DOI | MR | Zbl | MR | Zbl

[7] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 ; G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | Zbl | MR | Zbl

[8] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139):4(8) (1975), 607–629 | MR | Zbl

[9] E. M. Nikishin, “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. sem. im. I. G. Petrovskogo, 1984, no. 10, 3–77 | MR | Zbl

[10] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem. sb., 103(145):2(6) (1977), 237–252 | MR | Zbl

[11] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov. II”, Matem. sb., 118(160):1(5) (1982), 104–117 ; E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR-Sb., 46:1 (1983), 105–117 | MR | Zbl | DOI | Zbl

[12] J. S. Geronimo, K. M. Case, “Scattering theory and polynomials orthogonal on the real line”, Trans. Amer. Math. Soc., 258:2 (1980), 467–494 | DOI | MR | Zbl

[13] G. Sh. Guseinov, “Opredelenie beskonechnoi matritsy Yakobi po dannym rasseyaniya”, Dokl. AN SSSR, 227:6 (1976), 1289—1292 | MR | Zbl

[14] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[15] J. S. Geronimo, W. Van Assche, “Orthogonal polynomials with asymptotically periodic recurrrence coefficients”, J. Approx. Theory, 46:3 (1986), 251–283 | DOI | MR | Zbl

[16] S. P. Suetin, “Spektralnye svoistva nekotorogo klassa diskretnykh operatorov Shturma–Liuvillya”, UMN, 61:2 (2006), 171–172 | MR | Zbl

[17] S. P. Suetin, “On an integrable system and spectral properties of some class of discrete Sturm–Liuoville operators”, IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures and Turbulence (Moscow, 2006), Institute of Computer Science, Izhevsk, 2006, 139–141

[18] S. P. Suetin, Sravnitelnaya asimptotika reshenii i formuly sledov dlya nekotorogo klassa raznostnykh uravnenii, Sovremennye problemy matematiki, 6, MIAN, M., 2006 | DOI | MR | Zbl

[19] V. Batchenko, F. Gesztesy, “On the spectrum of Jacobi operators with quasiperiodic algebro-geometric coefficients”, IMRP Int. Math. Res. Pap., 2005, no. 10, 511–563 | DOI | MR | Zbl

[20] A. A. Gonchar, S. P. Suetin, Ob approksimatsiyakh Pade meromorfnykh funktsii markovskogo tipa, Sovremennye problemy matematiki, 5, MIAN, M., 2004 | DOI | MR | Zbl

[21] I. Egorova, J. Michor, G. Teschl, “Scattering theory for Jacobi operators with quasi-periodic background”, Comm. Math. Phys., 264:3 (2006), 811–842 | DOI | MR | Zbl

[22] A. A. Gonchar, “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118(160):4(8) (1982), 535–556 ; A. A. Gonchar, “On uniform convergence of diagonal Padé approximants”, Math. USSR-Sb., 46:4 (1983), 539–559 | MR | Zbl | DOI | Zbl

[23] V. I. Buslaev, “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl

[24] A. A. Gonchar, “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Matem. sb., 197:10 (2006), 3–14 | MR

[25] S. P. Suetin, “Ob asimptoticheskikh svoistvakh polyusov diagonalnykh approksimatsii Pade dlya nekotorykh obobschenii markovskikh funktsii”, Matem. sb., 193:12 (2002), 105–133 | MR | Zbl

[26] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl

[27] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, 1. Osnovy teorii. 2. Obobscheniya i prilozheniya, Mir, M., 1986 ; G. A. Baker Jr., P. Graves-Morris, Padé approximants. Part I, Basic theory, Encyclopedia Math. Appl., 13, Addison-Wesley Publ., Reading, Mass., 1981 ; Padé approximants. Part II, Extensions and applications, Encyclopedia Math. Appl., 14, Addison-Wesley Publ., Reading, Mass., 1981 | MR | Zbl | MR | Zbl | MR | Zbl

[28] S. P. Suetin, “Ob interpolyatsionnykh svoistvakh diagonalnykh approksimatsii Pade ellipticheskikh funktsii”, UMN, 59:4 (2004), 201–202 | MR | Zbl

[29] F. Peherstorfer, “Zeros of polynomials orthogonal on several intervals”, Int. Math. Res. Not., 2003, no. 7, 361–385 | DOI | MR | Zbl

[30] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | MR | Zbl

[31] J. Nuttall, “Padé polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl

[32] G. Teschl, “Algebro-geometric constraints on solitons with respect to quasi-periodic backgrounds”, Bull. London Math. Soc., 2007, 9 (to appear) | MR

[33] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Matem. sb., 121(163):3(7) (1983), 327–358 ; A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | MR | Zbl | DOI | MR | Zbl

[34] A. I. Aptekarev, “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125(167):2(10) (1984), 231–258 ; A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | MR | Zbl | DOI

[35] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[36] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960 ; G. Springer, Introduction to Riemann surfaces, Addison-Wesley Publ., Reading, Mass., 1957 | MR | Zbl | MR | Zbl

[37] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Advances in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl

[38] E. A. Rakhmanov, “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104(146):2(10) (1977), 271–291 | MR | Zbl

[39] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 ; G. M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl | MR | Zbl