@article{SM_2007_198_6_a5,
author = {S. P. Suetin},
title = {Trace formulae for a~class of {Jacobi} operators},
journal = {Sbornik. Mathematics},
pages = {857--885},
year = {2007},
volume = {198},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a5/}
}
S. P. Suetin. Trace formulae for a class of Jacobi operators. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 857-885. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a5/
[1] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 ; N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publ. Co., New York; Oliver Boyd, Edinburgh–London, 1965 | MR | Zbl | MR | Zbl
[2] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 ; E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl
[3] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl
[4] P. L. Chebyshëv, “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. Akademii Nauk, III (1855), 636–664; P. Tchébycheff, “Sur les fractions continues”, Journ. de Math. Pures et Appl. Sér. 2, 3 (1858), 289–323; “О непрерывных дробях”, Полное собрание сочинений, т. II, Изд-во АН СССР, М., Л., 1947, 103–126 | MR
[5] N. I. Akhiezer, “Chebyshëvskoe napravlenie v teorii funktsii”, Matematika XIX veka, eds. A. N. Kolmogorov, A. P. Yushkevich, Nauka, M., 1987, 9–79 | MR | Zbl
[6] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 ; А. А. Марков, “Два доказательства сходимости некоторых непрерывных дробей”, Избранные труды по теории непрерывных дробей и теории функций, наименее уклоняющихся от нуля, Гостехиздат, М.–Л., 1948, 106–119 | DOI | MR | Zbl | MR | Zbl
[7] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 ; G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | Zbl | MR | Zbl
[8] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139):4(8) (1975), 607–629 | MR | Zbl
[9] E. M. Nikishin, “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. sem. im. I. G. Petrovskogo, 1984, no. 10, 3–77 | MR | Zbl
[10] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem. sb., 103(145):2(6) (1977), 237–252 | MR | Zbl
[11] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov. II”, Matem. sb., 118(160):1(5) (1982), 104–117 ; E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR-Sb., 46:1 (1983), 105–117 | MR | Zbl | DOI | Zbl
[12] J. S. Geronimo, K. M. Case, “Scattering theory and polynomials orthogonal on the real line”, Trans. Amer. Math. Soc., 258:2 (1980), 467–494 | DOI | MR | Zbl
[13] G. Sh. Guseinov, “Opredelenie beskonechnoi matritsy Yakobi po dannym rasseyaniya”, Dokl. AN SSSR, 227:6 (1976), 1289—1292 | MR | Zbl
[14] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[15] J. S. Geronimo, W. Van Assche, “Orthogonal polynomials with asymptotically periodic recurrrence coefficients”, J. Approx. Theory, 46:3 (1986), 251–283 | DOI | MR | Zbl
[16] S. P. Suetin, “Spektralnye svoistva nekotorogo klassa diskretnykh operatorov Shturma–Liuvillya”, UMN, 61:2 (2006), 171–172 | MR | Zbl
[17] S. P. Suetin, “On an integrable system and spectral properties of some class of discrete Sturm–Liuoville operators”, IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures and Turbulence (Moscow, 2006), Institute of Computer Science, Izhevsk, 2006, 139–141
[18] S. P. Suetin, Sravnitelnaya asimptotika reshenii i formuly sledov dlya nekotorogo klassa raznostnykh uravnenii, Sovremennye problemy matematiki, 6, MIAN, M., 2006 | DOI | MR | Zbl
[19] V. Batchenko, F. Gesztesy, “On the spectrum of Jacobi operators with quasiperiodic algebro-geometric coefficients”, IMRP Int. Math. Res. Pap., 2005, no. 10, 511–563 | DOI | MR | Zbl
[20] A. A. Gonchar, S. P. Suetin, Ob approksimatsiyakh Pade meromorfnykh funktsii markovskogo tipa, Sovremennye problemy matematiki, 5, MIAN, M., 2004 | DOI | MR | Zbl
[21] I. Egorova, J. Michor, G. Teschl, “Scattering theory for Jacobi operators with quasi-periodic background”, Comm. Math. Phys., 264:3 (2006), 811–842 | DOI | MR | Zbl
[22] A. A. Gonchar, “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118(160):4(8) (1982), 535–556 ; A. A. Gonchar, “On uniform convergence of diagonal Padé approximants”, Math. USSR-Sb., 46:4 (1983), 539–559 | MR | Zbl | DOI | Zbl
[23] V. I. Buslaev, “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl
[24] A. A. Gonchar, “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Matem. sb., 197:10 (2006), 3–14 | MR
[25] S. P. Suetin, “Ob asimptoticheskikh svoistvakh polyusov diagonalnykh approksimatsii Pade dlya nekotorykh obobschenii markovskikh funktsii”, Matem. sb., 193:12 (2002), 105–133 | MR | Zbl
[26] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl
[27] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, 1. Osnovy teorii. 2. Obobscheniya i prilozheniya, Mir, M., 1986 ; G. A. Baker Jr., P. Graves-Morris, Padé approximants. Part I, Basic theory, Encyclopedia Math. Appl., 13, Addison-Wesley Publ., Reading, Mass., 1981 ; Padé approximants. Part II, Extensions and applications, Encyclopedia Math. Appl., 14, Addison-Wesley Publ., Reading, Mass., 1981 | MR | Zbl | MR | Zbl | MR | Zbl
[28] S. P. Suetin, “Ob interpolyatsionnykh svoistvakh diagonalnykh approksimatsii Pade ellipticheskikh funktsii”, UMN, 59:4 (2004), 201–202 | MR | Zbl
[29] F. Peherstorfer, “Zeros of polynomials orthogonal on several intervals”, Int. Math. Res. Not., 2003, no. 7, 361–385 | DOI | MR | Zbl
[30] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | MR | Zbl
[31] J. Nuttall, “Padé polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl
[32] G. Teschl, “Algebro-geometric constraints on solitons with respect to quasi-periodic backgrounds”, Bull. London Math. Soc., 2007, 9 (to appear) | MR
[33] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Matem. sb., 121(163):3(7) (1983), 327–358 ; A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | MR | Zbl | DOI | MR | Zbl
[34] A. I. Aptekarev, “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125(167):2(10) (1984), 231–258 ; A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | MR | Zbl | DOI
[35] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl
[36] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960 ; G. Springer, Introduction to Riemann surfaces, Addison-Wesley Publ., Reading, Mass., 1957 | MR | Zbl | MR | Zbl
[37] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Advances in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl
[38] E. A. Rakhmanov, “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104(146):2(10) (1977), 271–291 | MR | Zbl
[39] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 ; G. M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl | MR | Zbl