Integro-differential equation of non-local wave interaction
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 839-855 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integro-differential equation $$ \frac{d^2f}{dx^2}+Af=\int^\infty_0K(x-t)f(t)\,dt+g(x) $$ with kernel $$ K(x)=\lambda\int^\infty_ae^{-|x|p}G(p)\,dp, \qquad a\geqslant0, $$ is considered, in which $$ A>0,\qquad \lambda\in(-\infty,\infty), \qquad G(p)\geqslant0, \qquad 2\int^\infty_a\frac1p\,G(p)\,dp=1. $$ These equations arise, in particular, in the theory of non-local wave interaction. A factorization method of their analysis and solution is developed. Bibliography: 9 titles.
@article{SM_2007_198_6_a4,
     author = {N. B. Engibaryan and A. Kh. Khachatryan},
     title = {Integro-differential equation of non-local wave interaction},
     journal = {Sbornik. Mathematics},
     pages = {839--855},
     year = {2007},
     volume = {198},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a4/}
}
TY  - JOUR
AU  - N. B. Engibaryan
AU  - A. Kh. Khachatryan
TI  - Integro-differential equation of non-local wave interaction
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 839
EP  - 855
VL  - 198
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_6_a4/
LA  - en
ID  - SM_2007_198_6_a4
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%A A. Kh. Khachatryan
%T Integro-differential equation of non-local wave interaction
%J Sbornik. Mathematics
%D 2007
%P 839-855
%V 198
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2007_198_6_a4/
%G en
%F SM_2007_198_6_a4
N. B. Engibaryan; A. Kh. Khachatryan. Integro-differential equation of non-local wave interaction. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 839-855. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a4/

[1] G. A. Baraff, “Transmission of electromagnetic waves through a conducting slab. I. The two-sided Wiener–Hopf solution”, J. Math. Phys., 9:3 (1968), 372–384 | DOI | Zbl

[2] G. A. Baraff, “Transmission of electromagnetic waves through a conducting slab. II. The peak at cyclotron resonance”, Phys. Rev., 167:3 (1968), 625–636 | DOI

[3] G. E. Juras, “Line shapes in the radio-frequency size effect of metals”, Phys. Rev., 187:3 (1969), 784–800 | DOI

[4] Dzh. Kasti, R. Kalaba, Metody pogruzheniya v prikladnoi matematike, Mir, M., 1976 ; J. Casti, R. Kalaba, Imbedding methods in applied mathematics, Addison-Wesley, Reading, Mass.–London–Amsterdam, 1973 | MR | MR | Zbl

[5] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 ; S. Prössdorf, Einige Klassen singulärer Gleichungen, Birkhäuser, Basel–Stuttgart, 1974 | MR | Zbl | MR | Zbl

[6] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Sovrem. problemy matem. Matem. analiz., 22, VINITI, M., 1984, 175–244 | MR | Zbl

[7] N. B. Engibaryan, B. N. Engibaryan, “Integralnoe uravnenie svertki na polupryamoi s vpolne monotonnym yadrom”, Matem. sb., 187:10 (1996), 53–72 | MR | Zbl

[8] M. G. Krein, Yu. L. Shmulyan, “Uravneniya Vinera–Khopfa, yadra kotorykh dopuskayut integralnoe predstavlenie cherez eksponenty, I, II”, Izv. AN ArmSSR. Matem., 17:4 (1982), 307–327 | MR | Zbl

[9] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 ; W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl