Refinement of the Dirichlet–Jordan and Young's
Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 777-791 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions on an increasing sequence of positive integers $\{n_j\}$ ensuring that the Fourier series of a function of bounded variation has uniformly bounded sums of the absolute values of the blocks of terms with harmonics from $n_j$ to $n_{j+1}-1$ are established. Bibliography: 9 titles.
@article{SM_2007_198_6_a1,
     author = {A. S. Belov and S. A. Telyakovskii},
     title = {Refinement of the {Dirichlet{\textendash}Jordan} and {Young's}},
     journal = {Sbornik. Mathematics},
     pages = {777--791},
     year = {2007},
     volume = {198},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_6_a1/}
}
TY  - JOUR
AU  - A. S. Belov
AU  - S. A. Telyakovskii
TI  - Refinement of the Dirichlet–Jordan and Young's
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 777
EP  - 791
VL  - 198
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_6_a1/
LA  - en
ID  - SM_2007_198_6_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%A S. A. Telyakovskii
%T Refinement of the Dirichlet–Jordan and Young's
%J Sbornik. Mathematics
%D 2007
%P 777-791
%V 198
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2007_198_6_a1/
%G en
%F SM_2007_198_6_a1
A. S. Belov; S. A. Telyakovskii. Refinement of the Dirichlet–Jordan and Young's. Sbornik. Mathematics, Tome 198 (2007) no. 6, pp. 777-791. http://geodesic.mathdoc.fr/item/SM_2007_198_6_a1/

[1] S. A. Telyakovskii, “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 378–386 | MR | Zbl

[2] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 ; N. K. Bary, A treatise on trigonometric series, vols. I, II, Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1964 | MR | MR | Zbl

[3] S. A. Telyakovskii, “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, M., 2001, 318–326 | MR | Zbl

[4] S. A. Telyakovskii, “O skorosti skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Matem. zametki, 72:6 (2002), 949–953 | MR | Zbl

[5] R. Bojanić, “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publ. Inst. Math. (Beograd) (N.S.), 26(40) (1979), 57–60 | MR | Zbl

[6] S. A. Telyakovskii, “Usilenie teoremy Dirikhle –Zhordana o skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Mezhdunarodnaya konferentsiya “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, posvyaschennaya stoletiyu akademika S. M. Nikolskogo. Tezisy dokladov (Moskva, 2005), MIAN, M., 2005, 221

[7] A. Yu. Popov, S. A. Telyakovskii, “K otsenkam chastnykh summ ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matem., 2000, no. 1, 51–55 | MR | Zbl

[8] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 ; K. Yosida, Functional analysis, Academic Press, New York; Springer-Verlag, Berlin, 1965 | MR | Zbl | MR | Zbl

[9] A. Zigmund, Trigonometricheskie ryady, t. I, Mir, M., 1965 ; A. Zygmund, Trigonometric series, vol. I, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl | MR | Zbl