Weak limits of powers, simple spectrum of
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 733-754 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of automorphisms of the Lebesgue space such that their symmetric powers have simple spectrum is considered. In the framework of rank-one constructions mixing automorphisms with this property are constructed. The paper also contains results on weak limits, the local rank, and the spectral multiplicity of powers of automorphisms. Spectral properties of the stochastic Chacon automorphism are discussed. Bibliography: 23 titles.
@article{SM_2007_198_5_a6,
     author = {V. V. Ryzhikov},
     title = {Weak limits of powers, simple spectrum of},
     journal = {Sbornik. Mathematics},
     pages = {733--754},
     year = {2007},
     volume = {198},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a6/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Weak limits of powers, simple spectrum of
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 733
EP  - 754
VL  - 198
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a6/
LA  - en
ID  - SM_2007_198_5_a6
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Weak limits of powers, simple spectrum of
%J Sbornik. Mathematics
%D 2007
%P 733-754
%V 198
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a6/
%G en
%F SM_2007_198_5_a6
V. V. Ryzhikov. Weak limits of powers, simple spectrum of. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 733-754. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a6/

[1] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl

[2] V. V. Ryzhikov, “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl

[3] V. V. Ryzhikov, “Homogeneous spectrum, disjointness of convolutions, and mixing properties of dynamical systems”, Sel. Russian Math., 1, 1999, 13–24

[4] D. V. Anosov, O spektralnykh kratnostyakh v ergodicheskoi teorii, Sovremennye problemy matematiki, 3, MIAN, M., 2003 | DOI | MR | Zbl

[5] O. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl

[6] A. I. Danilenko, “Explicit solution of Rokhlin's problem on homogeneous spectrum and applications”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1467–1490 | DOI | MR | Zbl

[7] G. R. Goodson, “A survey of recent results in the spectral theory of ergodic dynamical systems”, J. Dynam. Control Systems, 5:2 (1999), 173–226 | DOI | MR | Zbl

[8] A. Katok, Combinatorial constructions in ergodic theory and dynamics, Univ. Lecture Ser., 30, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[9] V. I. Oseledets, “O spektre ergodicheskikh avtomorfizmov”, Dokl. AN SSSR, 168:5 (1966), 1009–1011 | MR | Zbl

[10] V. I. Oseledets, “Avtomorfizmy s prostym nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | MR | Zbl

[11] Ya. G. Sinai, “O svoistvakh spektrov ergodicheskikh dinamicheskikh sistem”, Dokl. AN SSSR, 150:6 (1963), 1235–1237 | MR | Zbl

[12] A. M. Stepin, “O svoistvakh spektrov ergodicheskikh dinamicheskikh sistem s lokalno kompaktnym vremenem”, Dokl. AN SSSR, 169:4 (1966), 773–776 | MR | Zbl

[13] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 ; A. M. Stepin, “Spectral properties of generic dynamical systems”, Math. USSR-Izv., 29:1 (1987), 159–192 | MR | Zbl | DOI

[14] A. M. Stepin, “Les spectres des systèmes dynamiques”, Actes du Congrès International des Mathématiciens (Nice, 1970), 2, Gauthier-Villars, Paris, 1971, 941–946 | MR | Zbl

[15] A. A. Prikhod'ko, V. V. Ryzhikov, “Disjointness of the convolutions for Chacon's automorphism”, Colloq. Math., 84–85 (2000), 67–74 | MR | Zbl

[16] T. M. Adams, “Smorodinsky's conjecture on rank-one mixing”, Proc. Amer. Math. Soc., 126:3 (1998), 739–744 | DOI | MR | Zbl

[17] V. V. Ryzhikov, “O spektralnykh i peremeshivayuschikh svoistvakh konstruktsii ranga 1 v ergodicheskoi teorii”, Dokl. RAN, 409:4 (2006), 448–450 | MR | Zbl

[18] D. Creutz, C. E. Silva, “Mixing on a class of rank-one transformations”, Ergodic Theory Dynam. Systems, 24:2 (2004), 407–440 | DOI | MR | Zbl

[19] A. B. Katok, A. M. Stepin, “Metricheskie svoistva gomeomorfizmov, sokhranyayuschikh meru”, UMN, 25:2 (1970), 193–220 | MR | Zbl

[20] J. Aaronson, An introduction to infinite ergodic theory, Math. Surveys Monogr., 50, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[21] E. Roy, Mesures de Poisson, infinie divisibilité et propriétés ergodiques, Thèse de doctorat, Université Paris 6, 2005

[22] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie protsessy”, Zapiski nauch. sem. LOMI, 72 (1977), 26–61 | MR | Zbl

[23] V. V. Ryzhikov, “O rangakh ergodicheskogo avtomorfizma $T\times T$”, Funkts. analiz i ego pril., 35:2 (2001), 84–87 | MR | Zbl