Optimality of the greedy algorithm for some function classes
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 691-709 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence rate of the pure greedy algorithm (PGA) is considered. Upper bounds for the convergence rate of the PGA are obtained in the case of the target function in the classes $\widehat{\mathscr A_\gamma}(\mathscr D)$, $\gamma\geqslant0$, which are extensions of the class $\widehat{\mathscr A_1}(\mathscr D)$. This bound is shown to be sharp in order for $\gamma\geqslant2$. Bibliography: 14 titles.
@article{SM_2007_198_5_a4,
     author = {E. D. Livshits},
     title = {Optimality of the greedy algorithm for some function classes},
     journal = {Sbornik. Mathematics},
     pages = {691--709},
     year = {2007},
     volume = {198},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a4/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - Optimality of the greedy algorithm for some function classes
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 691
EP  - 709
VL  - 198
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a4/
LA  - en
ID  - SM_2007_198_5_a4
ER  - 
%0 Journal Article
%A E. D. Livshits
%T Optimality of the greedy algorithm for some function classes
%J Sbornik. Mathematics
%D 2007
%P 691-709
%V 198
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a4/
%G en
%F SM_2007_198_5_a4
E. D. Livshits. Optimality of the greedy algorithm for some function classes. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 691-709. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a4/

[1] E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen I. Tell: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63:4 (1907), 433–476 | DOI | MR | Zbl

[2] S. G. Mallat, Zhifeng Zhang, “Matching pursuits with time-frequency dictionaries”, IEEE Trans. Signal Process., 41:12 (1993), 3397–3415 | DOI | Zbl

[3] J. H. Friedman, W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823 | DOI | MR

[4] L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 20:1 (1992), 608–613 | DOI | MR | Zbl

[5] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR | Zbl

[6] G. Davis, S. Mallat, M. Avellaneda, “Adaptive greedy approximations”, Constr. Approx., 13:1 (1997), 57–98 | DOI | MR | Zbl

[7] V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12:2–3 (2000), 213–227 | DOI | MR | Zbl

[8] V. V. Galatenko, “Ob odnoi modifikatsii zhadnykh razlozhenii”, Sovremennye metody teorii funktsii i smezhnye problemy. Materialy Voronezhskoi zimnei matematicheskoi shkoly (VGU, Voronezh, 2005), Izd-vo VGU, Voronezh, 2005, 65–66

[9] E. D. Livshits, “O skorosti skhodimosti chisto zhadnogo algoritma”, Matem. zametki, 76:4 (2004), 539–552 | MR | Zbl

[10] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl

[11] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal function”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl

[12] S. V. Konyagin, V. N. Temlyakov, “Rate of convergence of pure greedy algorithm”, East J. Approx., 5:4 (1999), 493–499 | MR | Zbl

[13] A. V. Silnichenko, “O skorosti skhodimosti zhadnykh algoritmov”, Matem. zametki, 76:4 (2004), 628–632 | MR | Zbl

[14] E. D. Livshitz, V. N. Temlyakov, “Two lower estimates in greedy approximation”, Constr. Approx., 19:4 (2003), 509–523 | DOI | MR | Zbl