Partitioning of the interval $[0,1]$ induced
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 661-690

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p_{i,n}$, $i=1,\dots,2^{n-1}$, be the lengths of the intervals between successive points in the Brocot sequence $F_n$. An asymptotic formula for the quantity $\sigma(F_n)=\sum_{i=1}^{N(n)}p_{i,n}^\beta$, which improves the previously known estimates, is obtained. Bibliography: 5 titles.
@article{SM_2007_198_5_a3,
     author = {A. A. Dushistova},
     title = {Partitioning of the interval $[0,1]$ induced},
     journal = {Sbornik. Mathematics},
     pages = {661--690},
     publisher = {mathdoc},
     volume = {198},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a3/}
}
TY  - JOUR
AU  - A. A. Dushistova
TI  - Partitioning of the interval $[0,1]$ induced
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 661
EP  - 690
VL  - 198
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a3/
LA  - en
ID  - SM_2007_198_5_a3
ER  - 
%0 Journal Article
%A A. A. Dushistova
%T Partitioning of the interval $[0,1]$ induced
%J Sbornik. Mathematics
%D 2007
%P 661-690
%V 198
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a3/
%G en
%F SM_2007_198_5_a3
A. A. Dushistova. Partitioning of the interval $[0,1]$ induced. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 661-690. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a3/