Partitioning of the interval $[0,1]$ induced
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 661-690
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $p_{i,n}$, $i=1,\dots,2^{n-1}$, be the lengths of the intervals
between successive points in the Brocot sequence $F_n$.
An asymptotic formula for the quantity
$\sigma(F_n)=\sum_{i=1}^{N(n)}p_{i,n}^\beta$, which
improves the previously known estimates, is obtained.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_2007_198_5_a3,
     author = {A. A. Dushistova},
     title = {Partitioning of the interval $[0,1]$ induced},
     journal = {Sbornik. Mathematics},
     pages = {661--690},
     publisher = {mathdoc},
     volume = {198},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a3/}
}
                      
                      
                    A. A. Dushistova. Partitioning of the interval $[0,1]$ induced. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 661-690. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a3/
