$L_1$$L_\infty$ estimates of solutions of the Cauchy
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 639-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a degenerate parabolic equation with anisotropic $p$-Laplacian and double non-linearity is considered. For increasing initial data local estimates for the $L_\infty$-norm of a solution are obtained, which yield a precise characterization of the growth of solutions at infinity. An estimate for the order of the length of the time interval on which a solution is defined is found in its dependence on the initial data. Bibliography: 12 titles.
@article{SM_2007_198_5_a2,
     author = {S. P. Degtyarev and A. F. Tedeev},
     title = {$L_1${\textendash}$L_\infty$ estimates of solutions of the {Cauchy}},
     journal = {Sbornik. Mathematics},
     pages = {639--660},
     year = {2007},
     volume = {198},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/}
}
TY  - JOUR
AU  - S. P. Degtyarev
AU  - A. F. Tedeev
TI  - $L_1$–$L_\infty$ estimates of solutions of the Cauchy
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 639
EP  - 660
VL  - 198
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/
LA  - en
ID  - SM_2007_198_5_a2
ER  - 
%0 Journal Article
%A S. P. Degtyarev
%A A. F. Tedeev
%T $L_1$–$L_\infty$ estimates of solutions of the Cauchy
%J Sbornik. Mathematics
%D 2007
%P 639-660
%V 198
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/
%G en
%F SM_2007_198_5_a2
S. P. Degtyarev; A. F. Tedeev. $L_1$–$L_\infty$ estimates of solutions of the Cauchy. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 639-660. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/

[1] E. Di Benedetto, M. A. Herrero, “On the Cauchy problem and initial traces for a degenerate parabolic equation”, Trans. Amer. Math. Soc., 314:1 (1989), 187–224 | DOI | MR | Zbl

[2] K. Ishige, “On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation”, SIAM J. Math. Anal., 27:5 (1996), 1235–1260 | DOI | MR | Zbl

[3] M. Sango, “On a doubly degenerate quasilinear anisitropic parabolic equation”, Analysis (Munich), 23:3 (2003), 249–260 | MR | Zbl

[4] M. M. Porzio, “$L^\infty$-regularity for degenerate and singular anisotropic parabolic equations”, Boll. Un. Mat. Ital. A (7), 11:3 (1997), 697–707 | MR | Zbl

[5] G. Sargenti, “Local boundedness and regularity results for a class of singular anisotropic parabolic equations”, Atti Sem. Mat. Fis. Univ. Modena, 48:1 (2000), 45–78 | MR | Zbl

[6] M. Yu, X. Lian, “Boundedness of solutions of parabolic equations with anisotropic growth conditions”, Canad. J. Math., 49:4 (1997), 798–809 | MR | Zbl

[7] D. Andreucci, A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differential Equations, 10:1 (2005), 89–120 | MR | Zbl

[8] D. Andreucci, A. F. Tedeev, “Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity”, Interfaces Free Bound., 3:3 (2001), 233–264 | MR | Zbl

[9] A. G. Korolev, “Teoremy vlozheniya anizotropnykh prostranstv Soboleva–Orlicha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 1, 32–37 | MR | Zbl

[10] F. Bernis, “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 ; O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl

[12] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993 | MR | Zbl