$L_1$--$L_\infty$ estimates of solutions of the Cauchy
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 639-660

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a degenerate parabolic equation with anisotropic $p$-Laplacian and double non-linearity is considered. For increasing initial data local estimates for the $L_\infty$-norm of a solution are obtained, which yield a precise characterization of the growth of solutions at infinity. An estimate for the order of the length of the time interval on which a solution is defined is found in its dependence on the initial data. Bibliography: 12 titles.
@article{SM_2007_198_5_a2,
     author = {S. P. Degtyarev and A. F. Tedeev},
     title = {$L_1$--$L_\infty$ estimates of solutions of the {Cauchy}},
     journal = {Sbornik. Mathematics},
     pages = {639--660},
     publisher = {mathdoc},
     volume = {198},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/}
}
TY  - JOUR
AU  - S. P. Degtyarev
AU  - A. F. Tedeev
TI  - $L_1$--$L_\infty$ estimates of solutions of the Cauchy
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 639
EP  - 660
VL  - 198
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/
LA  - en
ID  - SM_2007_198_5_a2
ER  - 
%0 Journal Article
%A S. P. Degtyarev
%A A. F. Tedeev
%T $L_1$--$L_\infty$ estimates of solutions of the Cauchy
%J Sbornik. Mathematics
%D 2007
%P 639-660
%V 198
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/
%G en
%F SM_2007_198_5_a2
S. P. Degtyarev; A. F. Tedeev. $L_1$--$L_\infty$ estimates of solutions of the Cauchy. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 639-660. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/