$L_1$--$L_\infty$ estimates of solutions of the Cauchy
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 639-660
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy
problem for a degenerate parabolic equation with
anisotropic $p$-Laplacian and double
non-linearity is considered.
For increasing initial data local estimates for the
$L_\infty$-norm of a solution are obtained, which
yield a precise characterization of the growth of solutions at
infinity. An estimate for the order of the length of the time
interval on which a solution
is defined is found in its dependence on the initial data.
Bibliography: 12 titles.
@article{SM_2007_198_5_a2,
author = {S. P. Degtyarev and A. F. Tedeev},
title = {$L_1$--$L_\infty$ estimates of solutions of the {Cauchy}},
journal = {Sbornik. Mathematics},
pages = {639--660},
publisher = {mathdoc},
volume = {198},
number = {5},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/}
}
S. P. Degtyarev; A. F. Tedeev. $L_1$--$L_\infty$ estimates of solutions of the Cauchy. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 639-660. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a2/