Special factorization of a~non-invertible integral Fredholm
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 627-637
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the special factorization of a non-invertible integral Fredholm
operator $I-K$ of the second kind with Hilbert–Schmidt kernel is considered.
Here $I$ is the identity operator and $K$ is an integral operator:
$$
(Kf)(x)\equiv\int_0^1 \mathrm K(x,t)f(t)\,dt,
\qquad
f \in L_2[0,1].
$$ It is proved that $\lambda=1$ is an eigenvalue of $K$ of multiplicity
$n\geqslant1$ if and only if
$I-K=W_{+,1}\circ\dots\circ W_{+,n}\circ (I-K_n)\circ
W_{-,1}\circ\dots\circ W_{-,n}$, where the $W_{+,j}$, $W_{-,j}$,
$j=1,\dots,n$, are bounded operators in $L_2[0,1]$ of a special structure
that are invertible from the left and the right, respectively.
Bibliography: 7 titles.
@article{SM_2007_198_5_a1,
author = {G. A. Grigoryan},
title = {Special factorization of a~non-invertible integral {Fredholm}},
journal = {Sbornik. Mathematics},
pages = {627--637},
publisher = {mathdoc},
volume = {198},
number = {5},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a1/}
}
G. A. Grigoryan. Special factorization of a~non-invertible integral Fredholm. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 627-637. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a1/