Special factorization of a non-invertible integral Fredholm
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 627-637 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the special factorization of a non-invertible integral Fredholm operator $I-K$ of the second kind with Hilbert–Schmidt kernel is considered. Here $I$ is the identity operator and $K$ is an integral operator: $$ (Kf)(x)\equiv\int_0^1 \mathrm K(x,t)f(t)\,dt, \qquad f \in L_2[0,1]. $$ It is proved that $\lambda=1$ is an eigenvalue of $K$ of multiplicity $n\geqslant1$ if and only if $I-K=W_{+,1}\circ\dots\circ W_{+,n}\circ (I-K_n)\circ W_{-,1}\circ\dots\circ W_{-,n}$, where the $W_{+,j}$, $W_{-,j}$, $j=1,\dots,n$, are bounded operators in $L_2[0,1]$ of a special structure that are invertible from the left and the right, respectively. Bibliography: 7 titles.
@article{SM_2007_198_5_a1,
     author = {G. A. Grigoryan},
     title = {Special factorization of a~non-invertible integral {Fredholm}},
     journal = {Sbornik. Mathematics},
     pages = {627--637},
     year = {2007},
     volume = {198},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a1/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - Special factorization of a non-invertible integral Fredholm
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 627
EP  - 637
VL  - 198
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a1/
LA  - en
ID  - SM_2007_198_5_a1
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T Special factorization of a non-invertible integral Fredholm
%J Sbornik. Mathematics
%D 2007
%P 627-637
%V 198
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a1/
%G en
%F SM_2007_198_5_a1
G. A. Grigoryan. Special factorization of a non-invertible integral Fredholm. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 627-637. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a1/

[1] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 ; I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970 | MR | MR | Zbl

[2] L. G. Arabadzhyan, N. B. Engibaryan, “Uravnenie v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matem. analiz, 22, VINITI, M., 1984, 175–244 ; L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36 (1987), 745–791 | MR | Zbl | DOI | Zbl

[3] L. M. Berkovich, Faktorizatsiya i preobrazovaniya obyknovennykh differentsialnykh uravnenii, Izd-vo Saratovskogo un-ta, Saratov, 1989 | MR | Zbl

[4] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 ; S. Prössdorf, Einige Klassen singulärer Gleichungen, Birkhäuser, Stuttgart–Basel, 1974 | MR | Zbl | MR | Zbl

[5] N. B. Engibaryan, “Nekotorye faktorizatsionnye teoremy dlya integralnykh operatorov”, Dokl. AN SSSR, 230:5 (1976), 1021–1024 | MR | Zbl

[6] N. B. Engibaryan, “Postanovka i reshenie nekotorykh zadach faktorizatsii integralnykh operatorov”, Matem. sb., 191:12 (2000), 61–76 | MR | Zbl

[7] G. A. Grigoryan, “Spetsialnaya faktorizatsiya neobratimogo operatora Fredgolma vtorogo roda”, Differents. uravneniya, 38:12 (2002), 1690–1697 | MR | Zbl