@article{SM_2007_198_5_a0,
author = {S. M. Ageev},
title = {Axiomatic method of partitions in the theory of},
journal = {Sbornik. Mathematics},
pages = {597--625},
year = {2007},
volume = {198},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a0/}
}
S. M. Ageev. Axiomatic method of partitions in the theory of. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 597-625. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a0/
[1] S. M. Ageev, “Aksiomaticheskii metod razbienii v teorii prostranstv Nebelinga. I. Uluchshenie svyaznosti razbienii”, Matem. sb., 198:3 (2007), 3–50 | MR
[2] A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995 | MR | Zbl
[3] R. D. Edwards, “Characterzing infinite dimensional manifolds topologically [after Henryk Toruńczyk]”, Séminaire Bourbaki, vol. 1978/79, Exposés 525–542, Lecture Notes in Math., 770, Springer-Verlag, Berlin–Heidelberg, 1980, 278–302 | DOI | MR | Zbl
[4] T. Banakh, “Characterization of spaces admitting a homotopy dense embedding into a Hilbert manifold”, Topology Appl., 86:2 (1998), 123–131 | DOI | MR | Zbl
[5] P. L. Bowers, “Dense embeddings of sigma-compact, nowhere locally compact metric spaces”, Proc. Amer. Math. Soc., 95:1 (1985), 123–130 | DOI | MR | Zbl
[6] M. Bestvina, Characterizing $k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc., 71, No 380, 1988 | MR | Zbl
[7] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, MI, 1965 | MR | Zbl
[8] S. M. Ageev, S. A. Bogatyi, “O skleikakh nekotorykh klassov metricheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1994, no. 6, 19–23 | MR | Zbl
[9] A. Chigogidze, “$\operatorname{UV}^n$-equivalence and $n$-equivalence”, Topology Appl., 45:3 (1992), 283–291 | DOI | MR | Zbl
[10] A. Chigogidze, K. Kawamura, E. D. Tymchatyn, “Nöbeling spaces and the pseudo-interiors of Menger compacta”, Topology Appl., 68:1 (1996), 33–65 | DOI | MR | Zbl
[11] J. E. West, “Mapping Hilbert cube manifolds to ANR's: A solution of a conjecture of Borsuk”, Ann. of Math. (2), 106:1 (1977), 1–18 | DOI | MR | Zbl