Axiomatic method of partitions in the theory of
Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 597-625 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the Nöbeling space is unknotted with respect to $Z$-sets. Results on the existence, improvement, and the shrinking of perfect resolutions are established. Bibliography: 11 titles.
@article{SM_2007_198_5_a0,
     author = {S. M. Ageev},
     title = {Axiomatic method of partitions in the theory of},
     journal = {Sbornik. Mathematics},
     pages = {597--625},
     year = {2007},
     volume = {198},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_5_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Axiomatic method of partitions in the theory of
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 597
EP  - 625
VL  - 198
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_5_a0/
LA  - en
ID  - SM_2007_198_5_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Axiomatic method of partitions in the theory of
%J Sbornik. Mathematics
%D 2007
%P 597-625
%V 198
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2007_198_5_a0/
%G en
%F SM_2007_198_5_a0
S. M. Ageev. Axiomatic method of partitions in the theory of. Sbornik. Mathematics, Tome 198 (2007) no. 5, pp. 597-625. http://geodesic.mathdoc.fr/item/SM_2007_198_5_a0/

[1] S. M. Ageev, “Aksiomaticheskii metod razbienii v teorii prostranstv Nebelinga. I. Uluchshenie svyaznosti razbienii”, Matem. sb., 198:3 (2007), 3–50 | MR

[2] A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995 | MR | Zbl

[3] R. D. Edwards, “Characterzing infinite dimensional manifolds topologically [after Henryk Toruńczyk]”, Séminaire Bourbaki, vol. 1978/79, Exposés 525–542, Lecture Notes in Math., 770, Springer-Verlag, Berlin–Heidelberg, 1980, 278–302 | DOI | MR | Zbl

[4] T. Banakh, “Characterization of spaces admitting a homotopy dense embedding into a Hilbert manifold”, Topology Appl., 86:2 (1998), 123–131 | DOI | MR | Zbl

[5] P. L. Bowers, “Dense embeddings of sigma-compact, nowhere locally compact metric spaces”, Proc. Amer. Math. Soc., 95:1 (1985), 123–130 | DOI | MR | Zbl

[6] M. Bestvina, Characterizing $k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc., 71, No 380, 1988 | MR | Zbl

[7] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, MI, 1965 | MR | Zbl

[8] S. M. Ageev, S. A. Bogatyi, “O skleikakh nekotorykh klassov metricheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1994, no. 6, 19–23 | MR | Zbl

[9] A. Chigogidze, “$\operatorname{UV}^n$-equivalence and $n$-equivalence”, Topology Appl., 45:3 (1992), 283–291 | DOI | MR | Zbl

[10] A. Chigogidze, K. Kawamura, E. D. Tymchatyn, “Nöbeling spaces and the pseudo-interiors of Menger compacta”, Topology Appl., 68:1 (1996), 33–65 | DOI | MR | Zbl

[11] J. E. West, “Mapping Hilbert cube manifolds to ANR's: A solution of a conjecture of Borsuk”, Ann. of Math. (2), 106:1 (1977), 1–18 | DOI | MR | Zbl