A complete metric in the set of mixing transformations
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 575-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A metric in the set of mixing measure-preserving transformations is introduced making of it a complete separable metric space. Dense and massive subsets of this space are investigated. A generic mixing transformation is proved to have simple singular spectrum and to be a mixing of arbitrary order; all its powers are disjoint. The convolution powers of the maximal spectral type for such transformations are mutually singular if the ratio of the corresponding exponents is greater than 2. It is shown that the conjugates of a generic mixing transformation are dense, as are also the conjugates of an arbitrary fixed Cartesian product. Bibliography: 28 titles.
@article{SM_2007_198_4_a6,
     author = {S. V. Tikhonov},
     title = {A~complete metric in the set of mixing transformations},
     journal = {Sbornik. Mathematics},
     pages = {575--596},
     year = {2007},
     volume = {198},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a6/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - A complete metric in the set of mixing transformations
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 575
EP  - 596
VL  - 198
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a6/
LA  - en
ID  - SM_2007_198_4_a6
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T A complete metric in the set of mixing transformations
%J Sbornik. Mathematics
%D 2007
%P 575-596
%V 198
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a6/
%G en
%F SM_2007_198_4_a6
S. V. Tikhonov. A complete metric in the set of mixing transformations. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 575-596. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a6/

[1] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1968 ; J. L. Kelley, General topology, Van Nostrand, Toronto–New York–London, 1955 | MR | Zbl | MR | Zbl

[2] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67) (1949), 107–150 ; V. A. Rohlin, “On the fundamental ideas of measure theory”, Amer. Math. Soc. Transl., 71 (1952), 1–55 | MR | Zbl | MR

[3] P. R. Halmos, “In general a measure preserving transformation is mixing”, Ann. of Math. (2), 45:4 (1944), 786–792 | DOI | MR | Zbl

[4] J. L. F. King, “The generic transformation has roots of all orders”, Colloq. Math., 84–85:2 (2000), 521–547 | MR | Zbl

[5] O. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl

[6] V. V. Ryzhikov, “Homogeneous spectrum, disjointness of convolutions, and mixing properties of dinamical sytems”, Selected Russian Mathematics, 1:1 (1999), 13–24 | MR

[7] P. R. Khalmosh, Lektsii po ergodicheskoi teorii, IL, M., 1959; РХД, 12, Удмурдский ун-т, Ижевск, 1999 ; P. R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, 3, Math. Soc. Japan, Tokyo, 1956 | Zbl | MR | Zbl

[8] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 6-e izd., Nauka, M., 1989 ; A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | Zbl | MR | Zbl

[9] E. Glasner, J.-P. Thouvenot, B. Weiss, “Every countable group has the weak Rohlin property”, Bull. London Math. Soc., 38:6 (2006), 932–936 | DOI | MR | Zbl

[10] S. Alpern, “Return times and conjugates of an antiperiodic transformation”, Ergodic Theory Dinam. Systems, 1:2 (1981), 135–143 | MR | Zbl

[11] V. V. Ryzhikov, “Predstavlenie preobrazovanii, sokhranyayuschikh meru Lebega, v vide proizvedeniya periodicheskikh preobrazovanii”, Matem. zametki, 38:6 (1985), 860–865 | MR | Zbl

[12] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 ; I. P. Cornfeld, S. V. Fomin, S. V. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl | MR | Zbl

[13] K. Kuratovskii, Topologiya, t. 1, Mir, M., 1966 | MR | Zbl

[14] H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation”, Math. Systems Theory, 1:1 (1967), 1–49 | DOI | MR | Zbl

[15] A. del Junco, “Disjointness of measure-preserving transformations, minimal self-joinings and cathegory”, Ergodic theory and dynamical systems. I (College Park, MD, 1979–80), Progr. Math., 10, Birkhäuser, Boston, Mass., 1981, 81–89 | MR | Zbl

[16] D. J. Rudolph, “An example of a measure preserving map with minimal self-joinings, and applications”, J. Anal. Math., 35 (1979), 97–122 | DOI | MR | Zbl

[17] V. A. Rokhlin, “Ob entropii metricheskogo avtmorfizma”, Dokl. AN SSSR, 124 (1959), 980–983 | MR | Zbl

[18] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5 (1967), 3–56 | MR | Zbl

[19] S. A. Yuzvinskii, “O metricheskikh avtomorfizmakh s prostym spektrom”, Dokl. AN SSSR, 172:5 (1967), 1036–1038 | MR | Zbl

[20] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 ; A. M. Stepin, “Spectral properties of generic dynamical systems”, Math. USSR-Izv., 29:1 (1987), 159–192 | MR | Zbl | DOI

[21] I. V. Girsanov, “O spektrakh dinamicheskikh sistem, porozhdaemykh gaussovskimi statsionarnymi protsessami”, Dokl. AN SSSR, 119 (1958), 851–853 | MR | Zbl

[22] A. M. Stepin, “O svyazi approksimativnykh i spektralnykh svoistv metricheskikh avtomorfizmov”, Matem. zametki, 13 (1973), 403–409 | MR | Zbl

[23] A. del Junco, M. Lemanczyk, “Generic spectral properties of measure-preserving maps and applications”, Proc. Amer. Math. Soc., 115:3 (1992), 725–736 | DOI | MR | Zbl

[24] El H. El Abdalaoui, “On the spectrum of the powers of Ornstein transformations”, Ergodic theory and harmonic analysis (Mumbai, 1999), Sankhyā Ser. A, 62, no. 3, 2000, 291–306 | MR | Zbl

[25] V. V. Ryzhikov, “O spektralnykh i peremeshivayuschikh svoistvakh konstruktsii ranga 1 v ergodicheskoi teorii”, Dokl. RAN, 409:4 (2006), 448–450 | MR | Zbl

[26] B. Host, “Mixing of all orders and pairwise independent joinings of systems with singular spectrum”, Israel J. Math., 76:3 (1991), 289–298 | DOI | MR | Zbl

[27] A. M. Stepin, A. M. Eremenko, “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | MR | Zbl

[28] S. V. Tikhonov, “Vlozhenie deistvii evklidovoi reshetki v potoki s mnogomernym vremenem”, Matem. sb., 197:1 (2006), 97–132 | MR