On Fano--Enriques threefolds
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 559-574
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $U\subset \mathbb P^N$ be a projective variety that is not a cone and whose hyperplane sections are smooth Enriques surfaces. It is proved that the degree of such $U$ is at most 32 and this bound is sharp.
Bibliography: 16 titles.
@article{SM_2007_198_4_a5,
author = {Yu. G. Prokhorov},
title = {On {Fano--Enriques} threefolds},
journal = {Sbornik. Mathematics},
pages = {559--574},
publisher = {mathdoc},
volume = {198},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a5/}
}
Yu. G. Prokhorov. On Fano--Enriques threefolds. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 559-574. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a5/