On Fano--Enriques threefolds
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 559-574

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U\subset \mathbb P^N$ be a projective variety that is not a cone and whose hyperplane sections are smooth Enriques surfaces. It is proved that the degree of such $U$ is at most 32 and this bound is sharp. Bibliography: 16 titles.
@article{SM_2007_198_4_a5,
     author = {Yu. G. Prokhorov},
     title = {On {Fano--Enriques} threefolds},
     journal = {Sbornik. Mathematics},
     pages = {559--574},
     publisher = {mathdoc},
     volume = {198},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a5/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On Fano--Enriques threefolds
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 559
EP  - 574
VL  - 198
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a5/
LA  - en
ID  - SM_2007_198_4_a5
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On Fano--Enriques threefolds
%J Sbornik. Mathematics
%D 2007
%P 559-574
%V 198
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a5/
%G en
%F SM_2007_198_4_a5
Yu. G. Prokhorov. On Fano--Enriques threefolds. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 559-574. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a5/