Sets of the form $\mathscr A+\mathscr B$ and finite continued fractions
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 537-557

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates are obtained for the number of proper irreducible fractions with denominator $p$ such that an initial and an end segment of their expansion in a continued fraction have bounded partial quotients. These results are connected with an estimate of incomplete Kloosterman sums over sets of the form $\mathscr A+\mathscr B\subset\mathbb Z_p$. Results on the distribution in $\mathbb Z_p$ of the elements of sets of the form $(\mathscr A+\mathscr B)^k$ and $k\cdot(\mathscr A+\mathscr B)^{-1}$ are obtained. Bibliography: 21 titles.
@article{SM_2007_198_4_a4,
     author = {N. G. Moshchevitin},
     title = {Sets of the form $\mathscr A+\mathscr B$ and finite continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {537--557},
     publisher = {mathdoc},
     volume = {198},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a4/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - Sets of the form $\mathscr A+\mathscr B$ and finite continued fractions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 537
EP  - 557
VL  - 198
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a4/
LA  - en
ID  - SM_2007_198_4_a4
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T Sets of the form $\mathscr A+\mathscr B$ and finite continued fractions
%J Sbornik. Mathematics
%D 2007
%P 537-557
%V 198
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a4/
%G en
%F SM_2007_198_4_a4
N. G. Moshchevitin. Sets of the form $\mathscr A+\mathscr B$ and finite continued fractions. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 537-557. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a4/