Asphericity and approximation properties of crossed modules
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 521-535

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the Baer invariants and approximation properties of crossed modules and $\text{cat}^1$-groups. Conditions are considered under which the kernels of crossed modules coincide with the intersection of the lower central series. An algebraic criterion for asphericity is produced for two-dimensional complexes having aspherical plus-construction. As a consequence it is shown that a subcomplex of an aspherical two-dimensional complex is aspherical if and only if its fundamental $\text{cat}^1$-group is residually soluble. Thus, a new formulation in group-theoretic terms is given to the Whitehead asphericity conjecture. Bibliography: 25 titles.
@article{SM_2007_198_4_a3,
     author = {R. V. Mikhailov},
     title = {Asphericity and approximation properties of crossed modules},
     journal = {Sbornik. Mathematics},
     pages = {521--535},
     publisher = {mathdoc},
     volume = {198},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a3/}
}
TY  - JOUR
AU  - R. V. Mikhailov
TI  - Asphericity and approximation properties of crossed modules
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 521
EP  - 535
VL  - 198
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a3/
LA  - en
ID  - SM_2007_198_4_a3
ER  - 
%0 Journal Article
%A R. V. Mikhailov
%T Asphericity and approximation properties of crossed modules
%J Sbornik. Mathematics
%D 2007
%P 521-535
%V 198
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a3/
%G en
%F SM_2007_198_4_a3
R. V. Mikhailov. Asphericity and approximation properties of crossed modules. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 521-535. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a3/