Contact degeneracies of closed 2-forms
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 491-520

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a closed 2-form that is degenerate at the points of a hypersurface and is non-degenerate outside it. In the neighbourhood of a singularity (which is called contact under certain natural conditions) the limit behaviour of Hamiltonian fields is investigated and a canonical form of the 2-form is found (Darboux's theorem). Connections with regular Lie structures are established. Properties of integrable structures on Liouville tori containing contact degeneracies are studied. Bibliography: 16 titles.
@article{SM_2007_198_4_a2,
     author = {D. B. Zot'ev},
     title = {Contact degeneracies of closed  2-forms},
     journal = {Sbornik. Mathematics},
     pages = {491--520},
     publisher = {mathdoc},
     volume = {198},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/}
}
TY  - JOUR
AU  - D. B. Zot'ev
TI  - Contact degeneracies of closed  2-forms
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 491
EP  - 520
VL  - 198
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/
LA  - en
ID  - SM_2007_198_4_a2
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%T Contact degeneracies of closed  2-forms
%J Sbornik. Mathematics
%D 2007
%P 491-520
%V 198
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/
%G en
%F SM_2007_198_4_a2
D. B. Zot'ev. Contact degeneracies of closed  2-forms. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 491-520. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/