Contact degeneracies of closed 2-forms
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 491-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider a closed 2-form that is degenerate at the points of a hypersurface and is non-degenerate outside it. In the neighbourhood of a singularity (which is called contact under certain natural conditions) the limit behaviour of Hamiltonian fields is investigated and a canonical form of the 2-form is found (Darboux's theorem). Connections with regular Lie structures are established. Properties of integrable structures on Liouville tori containing contact degeneracies are studied. Bibliography: 16 titles.
@article{SM_2007_198_4_a2,
     author = {D. B. Zot'ev},
     title = {Contact degeneracies of closed 2-forms},
     journal = {Sbornik. Mathematics},
     pages = {491--520},
     year = {2007},
     volume = {198},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/}
}
TY  - JOUR
AU  - D. B. Zot'ev
TI  - Contact degeneracies of closed 2-forms
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 491
EP  - 520
VL  - 198
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/
LA  - en
ID  - SM_2007_198_4_a2
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%T Contact degeneracies of closed 2-forms
%J Sbornik. Mathematics
%D 2007
%P 491-520
%V 198
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/
%G en
%F SM_2007_198_4_a2
D. B. Zot'ev. Contact degeneracies of closed 2-forms. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 491-520. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a2/

[1] A. T. Fomenko, Symplectic geometry, 2nd ed., Adv. Stud. Contemp. Math., 5, Gordon and Breach, Luxembourg, 1995 ; A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl | MR | Zbl

[2] O. I. Bogoyavlenskii, “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 ; O. I. Bogoyavlenskiĭ, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257 | MR | Zbl | DOI

[3] M. P. Kharlamov, “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR

[4] J. Martinet, “Sur les singularités des formes différentielles”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 95–178 | MR | Zbl

[5] V. I. Arnold, A. B. Givental, “Simplekticheskaya geometriya”, Dinamicheskie sistemy - 4, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 4, VINITI, M., 1985, 5–139 ; V. I. Arnol'd, A. B. Givental', “Symplectic geometry”, Dynamical systems. Vol. IV. Symplectic geometry and its applications, Encyclopedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 1–136 | MR | Zbl | MR

[6] A. Weinstein, Lectures on symplectic manifolds, Expository lectures from the CBMS Regional Conference (University of North Carolina, 1976), Regional Conference Series in Mathematics, 29, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl

[7] D. B. Zotev, “O simplekticheskoi geometrii mnogoobrazii s pochti vsyudu nevyrozhdennoi zamknutoi 2-formoi”, Matem. zametki, 76:1 (2004), 66–77 | MR | Zbl

[8] S. N. Pnevmatikos, “Structures hamiltoniennes en presence de contraintes”, C. R. Acad. Sci. Paris. Sér. A, 289:16 (1979), 799–802 | MR | Zbl

[9] T. Nôno, F. Mimura, “Poisson bracket under mappings”, Hokkaido Math. J., 1 (1972), 232–241 | MR | Zbl

[10] R. Hermann, Lie algebras and quantum mechanics, W. A. Benjamin Inc., New York, 1970 | MR | Zbl

[11] S. N. Pnevmatikos, “Structures symplectiques singulières génériques”, Ann. Inst. Fourier (Grenoble), 34:3 (1984), 201–218 | MR | Zbl

[12] A. A. Kirillov, “Lokalnye algebry Li”, UMN, 31:4 (1976), 57–76 | MR | Zbl

[13] J. W. Gray, “Some global properties of contact structures”, Ann. of Math. (2), 69:2 (1959), 421–450 | DOI | MR | Zbl

[14] L. D. Landau, E. M. Livshits, Teoreticheskaya fizika. T. 2. Teoriya polya, 7-e izd., Nauka, M., 1988 ; L. D. Landau, E. M. Lifshitz, Course of theoretical physics. Vol. 2. The classical theory of fields, Pergamon Press, Oxford–New York–Toronto, 1975 | MR | Zbl | MR | Zbl

[15] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, t. I, II, Udmurtskii un-t, Izhevsk, 1999 ; A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall / CRC, Boca Raton, FL, 2004 | MR | Zbl | MR | Zbl

[16] D. B. Zotev, “Fazovaya topologiya I klassa Appelrota volchka Kovalevskoi v magnitnom pole”, Fundam. i prikl. matem., 12:1 (2006), 95–128 | MR