Inversion of many-dimensional Mellin transforms and
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 447-463

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary pair of convex domains $U,\Theta\subset\mathbb R^n$ one introduces mirror-symmetric vector spaces $M_\Theta^U$ and $W_U^\Theta$ consisting of holomorphic functions in the corresponding domains and taken to each other by the direct and the inverse Mellin transformations. As applications, a generalization of the classical integral Mellin transform for a solution $y(x)$ of the general algebraic equation is obtained and the convergence domain of the Mellin–Barnes hypergeometric integral representing the solution $y(x)$ is found. Bibliography: 10 titles.
@article{SM_2007_198_4_a0,
     author = {I. A. Antipova},
     title = {Inversion of many-dimensional {Mellin} transforms and},
     journal = {Sbornik. Mathematics},
     pages = {447--463},
     publisher = {mathdoc},
     volume = {198},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/}
}
TY  - JOUR
AU  - I. A. Antipova
TI  - Inversion of many-dimensional Mellin transforms and
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 447
EP  - 463
VL  - 198
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/
LA  - en
ID  - SM_2007_198_4_a0
ER  - 
%0 Journal Article
%A I. A. Antipova
%T Inversion of many-dimensional Mellin transforms and
%J Sbornik. Mathematics
%D 2007
%P 447-463
%V 198
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/
%G en
%F SM_2007_198_4_a0
I. A. Antipova. Inversion of many-dimensional Mellin transforms and. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 447-463. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/