Inversion of many-dimensional Mellin transforms and
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 447-463
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary pair of convex domains $U,\Theta\subset\mathbb R^n$ one introduces mirror-symmetric vector spaces $M_\Theta^U$ and $W_U^\Theta$ consisting of holomorphic functions in the corresponding domains and taken to each other by the direct and the inverse
Mellin transformations. As applications, a generalization of the classical integral Mellin transform for a solution $y(x)$ of the general algebraic equation is obtained and the convergence domain of the Mellin–Barnes hypergeometric integral representing the solution
$y(x)$ is found.
Bibliography: 10 titles.
@article{SM_2007_198_4_a0,
author = {I. A. Antipova},
title = {Inversion of many-dimensional {Mellin} transforms and},
journal = {Sbornik. Mathematics},
pages = {447--463},
publisher = {mathdoc},
volume = {198},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/}
}
I. A. Antipova. Inversion of many-dimensional Mellin transforms and. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 447-463. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/