Inversion of many-dimensional Mellin transforms and
Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 447-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary pair of convex domains $U,\Theta\subset\mathbb R^n$ one introduces mirror-symmetric vector spaces $M_\Theta^U$ and $W_U^\Theta$ consisting of holomorphic functions in the corresponding domains and taken to each other by the direct and the inverse Mellin transformations. As applications, a generalization of the classical integral Mellin transform for a solution $y(x)$ of the general algebraic equation is obtained and the convergence domain of the Mellin–Barnes hypergeometric integral representing the solution $y(x)$ is found. Bibliography: 10 titles.
@article{SM_2007_198_4_a0,
     author = {I. A. Antipova},
     title = {Inversion of many-dimensional {Mellin} transforms and},
     journal = {Sbornik. Mathematics},
     pages = {447--463},
     year = {2007},
     volume = {198},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/}
}
TY  - JOUR
AU  - I. A. Antipova
TI  - Inversion of many-dimensional Mellin transforms and
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 447
EP  - 463
VL  - 198
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/
LA  - en
ID  - SM_2007_198_4_a0
ER  - 
%0 Journal Article
%A I. A. Antipova
%T Inversion of many-dimensional Mellin transforms and
%J Sbornik. Mathematics
%D 2007
%P 447-463
%V 198
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/
%G en
%F SM_2007_198_4_a0
I. A. Antipova. Inversion of many-dimensional Mellin transforms and. Sbornik. Mathematics, Tome 198 (2007) no. 4, pp. 447-463. http://geodesic.mathdoc.fr/item/SM_2007_198_4_a0/

[1] Hj. Mellin, “Über die fundamentale Wichtigkeit des Satzes von Cauchy für die Theorien der Gamma- und der hypergeometrischen Funktionen”, Acta Soc. Sci. Fennicae, 21:1 (1896), 115 | Zbl

[2] Hj. Mellin, “Über den Zusammenhang zwischen den linearen Differential- und Differenzengleichungen”, Acta Math., 25:1 (1902), 139–164 | DOI | MR | Zbl

[3] Hj. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci. Paris, 172 (1921), 658–661 | Zbl

[4] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. II. Funktsii neskolkikh peremennykh, Nauka, M., 1985 ; B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl | MR | Zbl

[5] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 ; V. S. Vladimirov, Methods of the theory of functions of many complex variables, MIT Press, Cambridge, MA–London, 1966 | MR | Zbl | MR

[6] M. Passare, A. Tsikh, O. Zhdanov, “A multidimensional Jordan residue lemma with an application to Mellin–Barnes integrals”, Contributions to complex analysis and analytic geometry (Paris, France, 1992), Aspects Math., E26, Vieweg, Braunschweig, 1994, 233–241 | MR | Zbl

[7] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel (Papers from the Abel bicentennial conference, Univ. of Oslo, Oslo, Norway, 2002), Springer-Verlag, Berlin, 2004, 653–672 | MR | Zbl

[8] R. Birkeland, “Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen”, Math. Z., 26:1 (1927), 566–578 | DOI | MR | Zbl

[9] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963 ; I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, Boston, MA, 1994 | MR | Zbl | MR | Zbl

[10] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl