Gromov–Witten invariants of Fano threefolds of genera 6 and 8
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 433-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the paper is to prove in the case of the Fano threefolds $V_{10}$ and $V_{14}$ Golyshev's conjecture on the modularity of the $D3$ equations for smooth Fano threefolds with Picard group $\mathbb Z$. More precisely, the counting matrices of prime two-pointed invariants of $V_{10}$ and $V_{14}$ are found with the help of a method allowing one to find the Gromov–Witten invariants of complete intersections in varieties for which these invariants are (partially) known. Bibliography: 33 titles.
@article{SM_2007_198_3_a5,
     author = {V. V. Przyjalkowski},
     title = {Gromov{\textendash}Witten invariants of {Fano} threefolds of genera~6 and~8},
     journal = {Sbornik. Mathematics},
     pages = {433--446},
     year = {2007},
     volume = {198},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Gromov–Witten invariants of Fano threefolds of genera 6 and 8
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 433
EP  - 446
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/
LA  - en
ID  - SM_2007_198_3_a5
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Gromov–Witten invariants of Fano threefolds of genera 6 and 8
%J Sbornik. Mathematics
%D 2007
%P 433-446
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/
%G en
%F SM_2007_198_3_a5
V. V. Przyjalkowski. Gromov–Witten invariants of Fano threefolds of genera 6 and 8. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 433-446. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/

[1] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[2] K. Behrend, Yu. Manin, “Stacks of stable maps and Gromov–Witten invariants”, Duke Math J., 85:1 (1996), 1–60 ; arXiv: alg-geom/9506023 | DOI | MR | Zbl

[3] K. Behrend, “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127:3 (1997), 601–617 | DOI | MR | Zbl

[4] A. B. Givental, “Equivariant Gromov–Witten invariants”, Int. Math. Res. Not., 1996:13 (1996), 613–663 ; arXiv: alg-geom/9603021 | DOI | MR | Zbl

[5] A. Gathmann, “Relative Gromov–Witten invariants and the mirror formula”, Math. Ann., 325:2 (2003), 393–412 ; arXiv: math.AG/0009190 | DOI | MR | Zbl

[6] A. Bertram, I. Ciocan-Fontanine, B. Kim, “Two proofs of a conjecture of Hori and Vafa”, Duke Math. J., 126:1 (2005), 101–136 ; arXiv: math.AG/0304403 | DOI | MR | Zbl

[7] A. Bertram, H. P. Kley, “New recursions for genus-zero Gromov–Witten invariants”, Topology, 44:1 (2005), 1–24 ; arXiv: math.AG/0007082 | DOI | MR | Zbl

[8] Y. -P. Lee, R. Pandharipande, “A reconstruction theorem in quantum cohomology and quantum $K$-theory”, Amer. J. Math., 126:6 (2004), 1367–1379 ; arXiv: math.AG/0104084 | DOI | MR | Zbl

[9] N. P. Gushel, “O mnogoobraziyakh Fano roda 6”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1159–1174 ; N. Gushel', “On Fano varieties of genus 6”, Math. USSR-Izv., 21:3 (1983), 445–459 | MR | Zbl | DOI

[10] N. P. Gushel, “O mnogoobraziyakh Fano roda 8”, UMN, 38:1 (1983), 163–164 | MR | Zbl

[11] N. P. Gushel, “O trekhmernykh mnogoobraziyakh Fano roda 8”, Algebra i analiz, 4:1 (1992), 120–134 ; N. Gushel', “On Fano 3-folds of genus 8”, St. Petersburg Math. J., 4:1 (1993), 115–129 | MR | Zbl | Zbl

[12] V. A. Iskovskikh, Lektsii po trekhmernym algebraicheskim mnogoobraziyam. Mnogoobraziya Fano, Izd-vo MGU, M., 1988 | Zbl

[13] V. A. Iskovskikh, “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 59–157 ; V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic varieties”, J. Soviet Math., 13 (1980), 745–814 | MR | Zbl | DOI | Zbl

[14] A. Iliev, “Geometry of the Fano threefold of degree 10 of the first type”, Curves, Jacobians, and Abelian varieties (Amherst, AM, 1990), Contemp. Math., 136, Amer. Math. Soc., Providence, RI, 1992, 209–254 | MR | Zbl

[15] V. Iskovskikh, Yu. Prokhorov, Fano varieties, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl

[16] D. Logachev, Fano threefolds of genus 6, arXiv: math.AG/0407147

[17] D. Yu. Logachev, “Birational isomorphism of a three-dimensional cubic and of the section of $G(2,6)$ by five hyperplanes, and similar problems”, The birational geometry of algebraic varieties, Sbornik Nauchnykh Trudov, 203, Yaroslav. Gos. Ped. Inst., Yaroslavl', 1983, 39–45 | MR | Zbl

[18] Sh. Mukai, “Fano 3-folds”, Complex projective geometry, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263 | MR | Zbl

[19] D. G. Markushevich, “Chislennye invarianty semeistv pryamykh na nekotorykh mnogoobraziyakh Fano”, Matem. sb., 116(158):2(10) (1981), 265–288 ; D. G. Markuševič, “Numerical invariants of families of lines on some Fano varieties”, Math. USSR-Sb., 44:2 (1983), 239–260 | MR | Zbl | DOI | Zbl

[20] A. Bayer, Yu. I. Manin, “(Semi)simple exercises in quantum cohomology”, The Fano conference, Univ. Torino, Turin, 2004, 143–173 ; arXiv: math.AG/0103164 | MR | Zbl

[21] G. Ciolli, “On the quantum cohomology of some Fano threefolds and a conjecture of Dubrovin”, Internat. J. Math., 16:8 (2005), 823–839 ; arXiv: math.AG/0403300 | DOI | MR | Zbl

[22] V. Ancona, M. Maggesi, “On the quantum cohomology of Fano bundles over projective spaces”, The Fano conference, Univ. Torino, Turin, 2004, 81–98 ; arXiv: math.AG/0012046 | MR | Zbl

[23] V. V. Batyrev, “Quantum cohomology rings of toric manifolds”, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992), Astérisque, 218, 1993, 9–34 ; arXiv: alg-geom/9310004 | MR | Zbl

[24] Z. Qin, Y. Ruan, “Quantum cohomology of projective bundles over $\mathbb P^n$”, Trans. Amer. Math. Soc., 350:9 (1998), 3615–3638 | DOI | MR | Zbl

[25] A. Beauville, “Quantum cohomology of complete intersections”, Mat. Fiz. Anal. Geom., 2:3–4 (1995), 384–398 ; arXiv: alg-geom/9501008 | MR | Zbl

[26] V. V. Golyshev, “Problemy geometrichnosti i modulyarnost nekotorykh variatsii Rimana–Rokha”, Dokl. RAN, 386:5 (2002), 583–588 | MR | Zbl

[27] Yu. I. Manin, Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial, M., 2002; Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[28] A. Vistoli, “Intersection theory on algebraic stacks and on their moduli spaces”, Invent. Math., 97:3 (1989), 613–670 | DOI | MR | Zbl

[29] H. Hori, C. Vafa, Mirror symmetry, arXiv: hep-th/0002222 | MR

[30] A. Gathmann, “Absolute and relative Gromov–Witten invariants of very ample hypersurfaces”, Duke Math. J., 115:2 (2002), 171–203 ; arXiv: math.AG/9908054 | DOI | MR | Zbl

[31] M. Kontsevich, Yu. Manin, “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196 (1998), 385–398 | DOI | MR | Zbl

[32] V. V. Golyshev, “Modulyarnost uravnenii D3 i klassifikatsiya V. Iskovskikh”, Dokl. RAN, 396:6 (2004), 733–739 ; V. V. Golyshev, “Modularity of equations D3 and the Iskovskikh classification”, Dokl. Math., 69:3 (2004), 443–449 ; arXiv: math.AG/0405039 | MR | Zbl

[33] W. Fulton, C. Woodward, “On the quantum product of Schubert classes”, J. Algebraic Geom., 13:4 (2004), 641–661 ; arXiv: math.AG/0112183 | MR | Zbl