Gromov--Witten invariants of Fano threefolds of genera~6 and~8
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 433-446
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The aim of the paper is to prove in the case of the Fano threefolds $V_{10}$
and $V_{14}$ Golyshev's conjecture on the modularity of the $D3$
equations for smooth Fano threefolds with Picard group $\mathbb Z$. More precisely, the counting matrices of prime two-pointed invariants of $V_{10}$ and $V_{14}$ are found
with the help of a method allowing one to find the Gromov–Witten invariants of complete intersections in varieties for which these invariants are (partially) known.
Bibliography: 33 titles.
			
            
            
            
          
        
      @article{SM_2007_198_3_a5,
     author = {V. V. Przyjalkowski},
     title = {Gromov--Witten invariants of {Fano} threefolds of genera~6 and~8},
     journal = {Sbornik. Mathematics},
     pages = {433--446},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/}
}
                      
                      
                    V. V. Przyjalkowski. Gromov--Witten invariants of Fano threefolds of genera~6 and~8. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 433-446. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/
