Gromov--Witten invariants of Fano threefolds of genera~6 and~8
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 433-446

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to prove in the case of the Fano threefolds $V_{10}$ and $V_{14}$ Golyshev's conjecture on the modularity of the $D3$ equations for smooth Fano threefolds with Picard group $\mathbb Z$. More precisely, the counting matrices of prime two-pointed invariants of $V_{10}$ and $V_{14}$ are found with the help of a method allowing one to find the Gromov–Witten invariants of complete intersections in varieties for which these invariants are (partially) known. Bibliography: 33 titles.
@article{SM_2007_198_3_a5,
     author = {V. V. Przyjalkowski},
     title = {Gromov--Witten invariants of {Fano} threefolds of genera~6 and~8},
     journal = {Sbornik. Mathematics},
     pages = {433--446},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Gromov--Witten invariants of Fano threefolds of genera~6 and~8
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 433
EP  - 446
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/
LA  - en
ID  - SM_2007_198_3_a5
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Gromov--Witten invariants of Fano threefolds of genera~6 and~8
%J Sbornik. Mathematics
%D 2007
%P 433-446
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/
%G en
%F SM_2007_198_3_a5
V. V. Przyjalkowski. Gromov--Witten invariants of Fano threefolds of genera~6 and~8. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 433-446. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a5/