Lower bounds for separable approximations of the Hilbert kernel
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 425-432
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotically best possible lower bounds for separable approximations are obtained for the function $1/(x+y)$. The method used for the derivation of such bounds is based on the generalization of the maximal volume principle for low-rank approximations.
Bibliography: 10 titles.
@article{SM_2007_198_3_a4,
author = {I. V. Oseledets},
title = {Lower bounds for separable approximations of the {Hilbert} kernel},
journal = {Sbornik. Mathematics},
pages = {425--432},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a4/}
}
I. V. Oseledets. Lower bounds for separable approximations of the Hilbert kernel. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 425-432. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a4/