Lower bounds for separable approximations of the Hilbert kernel
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 425-432

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotically best possible lower bounds for separable approximations are obtained for the function $1/(x+y)$. The method used for the derivation of such bounds is based on the generalization of the maximal volume principle for low-rank approximations. Bibliography: 10 titles.
@article{SM_2007_198_3_a4,
     author = {I. V. Oseledets},
     title = {Lower bounds for separable approximations of the {Hilbert} kernel},
     journal = {Sbornik. Mathematics},
     pages = {425--432},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a4/}
}
TY  - JOUR
AU  - I. V. Oseledets
TI  - Lower bounds for separable approximations of the Hilbert kernel
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 425
EP  - 432
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_3_a4/
LA  - en
ID  - SM_2007_198_3_a4
ER  - 
%0 Journal Article
%A I. V. Oseledets
%T Lower bounds for separable approximations of the Hilbert kernel
%J Sbornik. Mathematics
%D 2007
%P 425-432
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_3_a4/
%G en
%F SM_2007_198_3_a4
I. V. Oseledets. Lower bounds for separable approximations of the Hilbert kernel. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 425-432. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a4/