Axiomatic method of partitions in the theory
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 299-342

Voir la notice de l'article provenant de la source Math-Net.Ru

The Nöbeling space $N_k^{2k+1}$, a $k$-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) $k$-dimensional absolute extensor in dimension $k$ (that is, $\mathrm{AE}(k)$) and a strongly $k$-universal space. The conjecture that the above-listed properties characterize the Nöbeling space $N_k^{2k+1}$ in an arbitrary finite dimension $k$ is proved. In the first part of the paper a full axiom system of the Nöbeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis. Bibliography: 29 titles.
@article{SM_2007_198_3_a0,
     author = {S. M. Ageev},
     title = {Axiomatic method of partitions in the theory},
     journal = {Sbornik. Mathematics},
     pages = {299--342},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Axiomatic method of partitions in the theory
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 299
EP  - 342
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_3_a0/
LA  - en
ID  - SM_2007_198_3_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Axiomatic method of partitions in the theory
%J Sbornik. Mathematics
%D 2007
%P 299-342
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_3_a0/
%G en
%F SM_2007_198_3_a0
S. M. Ageev. Axiomatic method of partitions in the theory. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 299-342. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a0/