Axiomatic method of partitions in the theory
Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 299-342
Voir la notice de l'article provenant de la source Math-Net.Ru
The Nöbeling space $N_k^{2k+1}$, a
$k$-dimensional analogue of the
Hilbert space, is considered; this is
a topologically complete separable (that is, Polish)
$k$-dimensional absolute extensor
in dimension $k$ (that is, $\mathrm{AE}(k)$) and a strongly
$k$-universal space.
The conjecture that the above-listed properties characterize the
Nöbeling space $N_k^{2k+1}$
in an arbitrary finite dimension $k$ is proved. In the first
part of the paper a full axiom system of the Nöbeling spaces is presented
and the problem of the improvement of a partition connectivity is solved
on its basis.
Bibliography: 29 titles.
@article{SM_2007_198_3_a0,
author = {S. M. Ageev},
title = {Axiomatic method of partitions in the theory},
journal = {Sbornik. Mathematics},
pages = {299--342},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_3_a0/}
}
S. M. Ageev. Axiomatic method of partitions in the theory. Sbornik. Mathematics, Tome 198 (2007) no. 3, pp. 299-342. http://geodesic.mathdoc.fr/item/SM_2007_198_3_a0/