Zero sequences of holomorphic functions, representation
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 261-298

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda=\{\lambda_k\}$ be a point sequence in a subdomain $\Omega$ of the complex plane $\mathbb C$. In terms of harmonic measures, Green's functions, balayage, Jensen measures, and so on, general conditions are described ensuring that $\Lambda$ is the zero sequence of a holomorphic function in a prescribed weighted space of holomorphic functions in $\Omega$. The question of the representation of a meromorphic function in $\Omega$ as the ratio of holomorphic functions without common zeros from a prescribed weighted space is considered in similar terms. Some applications are presented. Bibliography: 46 titles.
@article{SM_2007_198_2_a5,
     author = {B. N. Khabibullin},
     title = {Zero sequences of holomorphic functions, representation},
     journal = {Sbornik. Mathematics},
     pages = {261--298},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Zero sequences of holomorphic functions, representation
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 261
EP  - 298
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a5/
LA  - en
ID  - SM_2007_198_2_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Zero sequences of holomorphic functions, representation
%J Sbornik. Mathematics
%D 2007
%P 261-298
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a5/
%G en
%F SM_2007_198_2_a5
B. N. Khabibullin. Zero sequences of holomorphic functions, representation. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 261-298. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a5/