Closed geodesics on the surface of a simplex
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 243-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The closed non-self-intersecting geodesics on the surface of a three-dimensional simplex are studied. It is proved that every geodesic on an arbitrary simplex can be realized on a regular simplex. This enables us to obtain a complete classification of all geodesics and describe their structure. Conditions for the existence of geodesics are obtained for an arbitrary simplex. It is proved that a simplex has infinitely many essentially different geodesics if and only if it is isohedral. Estimates for the number of geodesics are obtained for other simplexes. Bibliography: 13 titles.
@article{SM_2007_198_2_a4,
     author = {V. Yu. Protasov},
     title = {Closed geodesics on the surface of a simplex},
     journal = {Sbornik. Mathematics},
     pages = {243--260},
     year = {2007},
     volume = {198},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Closed geodesics on the surface of a simplex
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 243
EP  - 260
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/
LA  - en
ID  - SM_2007_198_2_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Closed geodesics on the surface of a simplex
%J Sbornik. Mathematics
%D 2007
%P 243-260
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/
%G en
%F SM_2007_198_2_a4
V. Yu. Protasov. Closed geodesics on the surface of a simplex. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 243-260. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/

[1] L. A. Lyusternik, L. G. Shnirelman, “Topologicheskie metody v variatsionnykh zadachakh i ikh prilozheniya k differentsialnoi geometrii poverkhnostei”, UMN, 2:1 (1947), 166–217 | MR

[2] J. Franks, “Geodesics on $S^2$ and periodic points of annulus homeomorphisms”, Invent. Math., 108:2 (1992), 403–418 | DOI | MR | Zbl

[3] V. Bangert, “On the existence of closed geodesics on two-spheres”, Internat. J. Math., 4:1 (1993), 1–10 | DOI | MR | Zbl

[4] A. D. Alexandrov, Selected works. Part II. Intrinsic geometry of convex surfaces, ed. S. S. Kutateladze, Chapman Hall / CRC, Boca Raton, FL, 2005 | MR | MR | Zbl | Zbl

[5] A. V. Pogorelov, “Kvazi-geodezicheskie linii na vypukloi poverkhnosti”, Matem. sb., 25(62) (1949), 275–306 | MR | Zbl

[6] W. Klingenberg, Lectures on closed geodesics, Springer, New York, 1978 | MR | Zbl

[7] G. A. Galperin, “O teoreme Lyusternika–Shnirelmana dlya mnogogrannikov”, UMN, 46:6 (1991), 207–208 | MR

[8] G. A. Galperin, “Convex polyhedra without simple closed geodesics”, Regul. Chaotic Dyn., 8:1 (2003), 45–58 | DOI | MR | Zbl

[9] A. Ivanov, A. A. Tuzhilin, “Extreme networks”, Acta Appl. Math., 66:3 (2001), 251–317 | DOI | MR | Zbl

[10] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M., Izhevsk, 2003

[11] A. V. Zorich, “Geodesics on flat surfaces”, Proceedings of the International Congress of Mathematics, vol. III: Invited lectures (Madrid, Spain, 2006), EMS Publ. House, Zürich, 2006, 121–146 | MR | Zbl

[12] V. V. Prasolov, I. F. Sharygin, Zadachi po stereometrii, Nauka, M., 1989 | MR | Zbl

[13] A. A. Bukhshtab, Teoriya chisel, Prosveschenie, M., 1966 | MR | Zbl