Closed geodesics on the surface of a simplex
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 243-260

Voir la notice de l'article provenant de la source Math-Net.Ru

The closed non-self-intersecting geodesics on the surface of a three-dimensional simplex are studied. It is proved that every geodesic on an arbitrary simplex can be realized on a regular simplex. This enables us to obtain a complete classification of all geodesics and describe their structure. Conditions for the existence of geodesics are obtained for an arbitrary simplex. It is proved that a simplex has infinitely many essentially different geodesics if and only if it is isohedral. Estimates for the number of geodesics are obtained for other simplexes. Bibliography: 13 titles.
@article{SM_2007_198_2_a4,
     author = {V. Yu. Protasov},
     title = {Closed geodesics on the surface of a simplex},
     journal = {Sbornik. Mathematics},
     pages = {243--260},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Closed geodesics on the surface of a simplex
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 243
EP  - 260
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/
LA  - en
ID  - SM_2007_198_2_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Closed geodesics on the surface of a simplex
%J Sbornik. Mathematics
%D 2007
%P 243-260
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/
%G en
%F SM_2007_198_2_a4
V. Yu. Protasov. Closed geodesics on the surface of a simplex. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 243-260. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a4/