Voronin-type theorem for periodic Hurwitz zeta-functions
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 231-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A result on the approximation of a fixed system of analytic functions by translations of Hurwitz zeta-functions with transcendental parameter is established. This is an analogue of Voronin's theorem on the joint universality of the Dirichlet $L$-functions. Bibliography: 28 titles.
@article{SM_2007_198_2_a3,
     author = {A. P. Laurincikas},
     title = {Voronin-type theorem for periodic {Hurwitz} zeta-functions},
     journal = {Sbornik. Mathematics},
     pages = {231--242},
     year = {2007},
     volume = {198},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a3/}
}
TY  - JOUR
AU  - A. P. Laurincikas
TI  - Voronin-type theorem for periodic Hurwitz zeta-functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 231
EP  - 242
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a3/
LA  - en
ID  - SM_2007_198_2_a3
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%T Voronin-type theorem for periodic Hurwitz zeta-functions
%J Sbornik. Mathematics
%D 2007
%P 231-242
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a3/
%G en
%F SM_2007_198_2_a3
A. P. Laurincikas. Voronin-type theorem for periodic Hurwitz zeta-functions. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a3/

[1] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[2] S. M. Voronin, “Teorema o raspredelenii dzeta-funktsii Rimana”, Dokl. AN SSSR, 221:4 (1975), 771 | MR | Zbl

[3] S. M. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. ... dokt. fiz.-matem. nauk, MIAN, M., 1977

[4] S. M. Voronin, “Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov”, Matem. zametki, 24:6 (1978), 879–884 ; S. M. Voronin, “Analytic properties of Dirichlet generating functions of arithmetic objects”, Math. Notes, 24:5–6 (1979), 966–969 | MR | Zbl | Zbl

[5] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27:2 (1975), 493–503 | MR | Zbl

[6] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 ; A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter, Berlin, 1992 | MR | Zbl | MR | Zbl

[7] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[8] K. -G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc., 36 (1999), 345–381 | DOI | MR | Zbl

[9] A. Laurinčikas, “The universality of zeta-functions”, Acta Appl. Math., 78:1–3 (2003), 251–271 | DOI | MR | Zbl

[10] K. Matsumoto, “Probabilistic value-distribution theory of zeta functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR

[11] S. M. Gonek, Analytic properties of zeta and $L$-functions, Thesis, Univ. Michigan, 1979

[12] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Thesis, Indian Statist. Inst., Calcutta, 1981

[13] B. Bagchi, “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl

[14] A. Laurinčikas, K. Matsumoto, “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl

[15] K. Matsumoto, “Value-distribution of zeta-functions”, Analytic number theory (Tokyo, 1988), Lecture Notes in Math., 1434, 1990, 178–187 | MR | Zbl

[16] A. Laurinchikas, “O nulyakh lineinykh kombinatsii Matsumoto dzeta-funktsii”, Litovskii matem. sb., 38 (1998), 185–204

[17] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75 | MR | Zbl

[18] R. Šleževičien.{e}, “The joint universality for twists of Dirichlet series with multiplicative coefficients by characters”, Analytic and probabilistic methods in number theory (Palanga, 2001), TEV, Vilnius, 2002, 309–319 | MR | Zbl

[19] A. Laurinčikas, K. Matsumoto, “The joint universality of twisted automorphic $L$-functions”, J. Math. Soc. Japan, 56:3 (2004), 923–939 | DOI | MR | Zbl

[20] A. Laurinčikas, “The joint universality for general Dirichlet series”, Ann. Univ. Sci. Budapest. Sect. Comput., 22 (2003), 235–251 | MR | Zbl

[21] A. Laurinchikas, “Sovmestnaya universalnost obschikh ryadov Dirikhle”, Izv. PAN. Ser. matem., 69:1 (2005), 133–144 | MR

[22] A. Javtokas, A. Laurinčikas, On the periodic Hurwitz zeta-function, Hardy-Ramanujan J. (to appear) | MR | Zbl

[23] A. Javtokas, A. Laurinčikas, “The universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl

[24] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR | Zbl

[25] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[26] J. Genys, A. Laurinčikas, “On joint limit theorem of general Dirichlet series”, Nonlinear Anal. Model. Control, 8:2 (2003), 27–39 | MR | Zbl

[27] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl

[28] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., 20, 1960 | MR | Zbl