@article{SM_2007_198_2_a3,
author = {A. P. Laurincikas},
title = {Voronin-type theorem for periodic {Hurwitz} zeta-functions},
journal = {Sbornik. Mathematics},
pages = {231--242},
year = {2007},
volume = {198},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a3/}
}
A. P. Laurincikas. Voronin-type theorem for periodic Hurwitz zeta-functions. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a3/
[1] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl
[2] S. M. Voronin, “Teorema o raspredelenii dzeta-funktsii Rimana”, Dokl. AN SSSR, 221:4 (1975), 771 | MR | Zbl
[3] S. M. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. ... dokt. fiz.-matem. nauk, MIAN, M., 1977
[4] S. M. Voronin, “Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov”, Matem. zametki, 24:6 (1978), 879–884 ; S. M. Voronin, “Analytic properties of Dirichlet generating functions of arithmetic objects”, Math. Notes, 24:5–6 (1979), 966–969 | MR | Zbl | Zbl
[5] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27:2 (1975), 493–503 | MR | Zbl
[6] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 ; A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter, Berlin, 1992 | MR | Zbl | MR | Zbl
[7] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl
[8] K. -G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc., 36 (1999), 345–381 | DOI | MR | Zbl
[9] A. Laurinčikas, “The universality of zeta-functions”, Acta Appl. Math., 78:1–3 (2003), 251–271 | DOI | MR | Zbl
[10] K. Matsumoto, “Probabilistic value-distribution theory of zeta functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR
[11] S. M. Gonek, Analytic properties of zeta and $L$-functions, Thesis, Univ. Michigan, 1979
[12] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Thesis, Indian Statist. Inst., Calcutta, 1981
[13] B. Bagchi, “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl
[14] A. Laurinčikas, K. Matsumoto, “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl
[15] K. Matsumoto, “Value-distribution of zeta-functions”, Analytic number theory (Tokyo, 1988), Lecture Notes in Math., 1434, 1990, 178–187 | MR | Zbl
[16] A. Laurinchikas, “O nulyakh lineinykh kombinatsii Matsumoto dzeta-funktsii”, Litovskii matem. sb., 38 (1998), 185–204
[17] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75 | MR | Zbl
[18] R. Šleževičien.{e}, “The joint universality for twists of Dirichlet series with multiplicative coefficients by characters”, Analytic and probabilistic methods in number theory (Palanga, 2001), TEV, Vilnius, 2002, 309–319 | MR | Zbl
[19] A. Laurinčikas, K. Matsumoto, “The joint universality of twisted automorphic $L$-functions”, J. Math. Soc. Japan, 56:3 (2004), 923–939 | DOI | MR | Zbl
[20] A. Laurinčikas, “The joint universality for general Dirichlet series”, Ann. Univ. Sci. Budapest. Sect. Comput., 22 (2003), 235–251 | MR | Zbl
[21] A. Laurinchikas, “Sovmestnaya universalnost obschikh ryadov Dirikhle”, Izv. PAN. Ser. matem., 69:1 (2005), 133–144 | MR
[22] A. Javtokas, A. Laurinčikas, On the periodic Hurwitz zeta-function, Hardy-Ramanujan J. (to appear) | MR | Zbl
[23] A. Javtokas, A. Laurinčikas, “The universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl
[24] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR | Zbl
[25] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[26] J. Genys, A. Laurinčikas, “On joint limit theorem of general Dirichlet series”, Nonlinear Anal. Model. Control, 8:2 (2003), 27–39 | MR | Zbl
[27] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl
[28] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., 20, 1960 | MR | Zbl