Dyadic distributions
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 207-230

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the concept of pointwise dyadic derivative dyadic distributions are introduced as continuous linear functionals on the linear space $D_d(\mathbb R_+)$ of infinitely differentiable functions compactly supported by the positive half-axis $\mathbb R_+$ together with all dyadic derivatives. The completeness of the space $D'_d(\mathbb R_+)$ of dyadic distributions is established. It is shown that a locally integrable function on $\mathbb R_+$ generates a dyadic distribution. In addition, the space $S_d(\mathbb R_+)$ of infinitely dyadically differentiable functions on $\mathbb R_+$ rapidly decreasing in the neighbourhood of $+\infty$ is defined. The space $S'_d(\mathbb R_+)$ of dyadic distributions of slow growth is introduced as the space of continuous linear functionals on $S_d(\mathbb R_+)$. The completeness of the space $S'_d(\mathbb R_+)$ is established; it is proved that each integrable function on $\mathbb R_+$ with polynomial growth at $+\infty$ generates a dyadic distribution of slow growth. Bibliography: 25 titles.
@article{SM_2007_198_2_a2,
     author = {B. I. Golubov},
     title = {Dyadic distributions},
     journal = {Sbornik. Mathematics},
     pages = {207--230},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Dyadic distributions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 207
EP  - 230
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/
LA  - en
ID  - SM_2007_198_2_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Dyadic distributions
%J Sbornik. Mathematics
%D 2007
%P 207-230
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/
%G en
%F SM_2007_198_2_a2
B. I. Golubov. Dyadic distributions. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 207-230. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/