Dyadic distributions
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 207-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the concept of pointwise dyadic derivative dyadic distributions are introduced as continuous linear functionals on the linear space $D_d(\mathbb R_+)$ of infinitely differentiable functions compactly supported by the positive half-axis $\mathbb R_+$ together with all dyadic derivatives. The completeness of the space $D'_d(\mathbb R_+)$ of dyadic distributions is established. It is shown that a locally integrable function on $\mathbb R_+$ generates a dyadic distribution. In addition, the space $S_d(\mathbb R_+)$ of infinitely dyadically differentiable functions on $\mathbb R_+$ rapidly decreasing in the neighbourhood of $+\infty$ is defined. The space $S'_d(\mathbb R_+)$ of dyadic distributions of slow growth is introduced as the space of continuous linear functionals on $S_d(\mathbb R_+)$. The completeness of the space $S'_d(\mathbb R_+)$ is established; it is proved that each integrable function on $\mathbb R_+$ with polynomial growth at $+\infty$ generates a dyadic distribution of slow growth. Bibliography: 25 titles.
@article{SM_2007_198_2_a2,
     author = {B. I. Golubov},
     title = {Dyadic distributions},
     journal = {Sbornik. Mathematics},
     pages = {207--230},
     year = {2007},
     volume = {198},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Dyadic distributions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 207
EP  - 230
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/
LA  - en
ID  - SM_2007_198_2_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Dyadic distributions
%J Sbornik. Mathematics
%D 2007
%P 207-230
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/
%G en
%F SM_2007_198_2_a2
B. I. Golubov. Dyadic distributions. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 207-230. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a2/

[1] S. Soboleff, “Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéaire hyperboliques normales”, Matem. sb., 1(43):1 (1936), 39–72 | Zbl

[2] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950 ; S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl

[3] L. Schwartz, “Generalisation de la notion de function, de derivation, de transformation de Fourier et applications mathematiques et physique”, Ann. Univ. Grenoble, 21 (1946), 57–74 | MR | Zbl

[4] L. Schwartz, Théorie des distributions, vol. 1, Hermann, Paris, 1950 | MR | Zbl

[5] L. Schwartz, Théorie des distributions, vol. 2, Hermann, Paris, 1951 | MR | Zbl

[6] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, t. 1–3, Fizmatgiz, M., 1959, 1958 ; I. M. Gel'fand, G. E. Shilov, Generalized functions, vol. 1–3, Academic Press, New York–London, 1964, 1968, 1967 | MR | Zbl | Zbl | Zbl | MR | Zbl | Zbl | Zbl

[7] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 ; I. N. Vekua, Generalized analytic functions, Pergamon Press, London–Paris–Frankfurt, 1962 | MR | Zbl | MR | Zbl

[8] P. Antosik, Ya. Mikusinskii, R. Sikorskii, Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976 ; P. Antosik, J. Mikusinski, R. Sikorski, Theory of distributions. The sequential approach, Elsevier, Amsterdam, 1973 | MR | MR | Zbl

[9] A. H. Zemanian, Distribution theory and transform analysis. An introduction to generalized functions, with applications, McGraw-Hill Book Co., New York, 1965 | MR | Zbl

[10] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 ; V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | Zbl | MR | Zbl

[11] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[12] Y. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, New York, 1985 | MR | Zbl

[13] R. Edvards, Ryady Fure v sovremennom izlozhenii, t. 2, Mir, M., 1985 ; R. E. Edwards, Fourier series. A modern introduction, vol. 2, Grad. Texts in Math., 85, Springer-Verlag, New York, 1982 | MR | Zbl | MR | Zbl

[14] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR | Zbl

[15] L. D. Kudryavtsev, Matematicheskii analiz, t. 2, Vysshaya shkola, M., 1970

[16] S. M. Nikolskii, Kurs matematicheskogo analiza, t. 2, Nauka, M., 1973 | MR | Zbl

[17] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR | Zbl

[18] N. J. Fine, “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69:1 (1950), 66–77 | DOI | MR | Zbl

[19] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 ; B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Kluwer, Dordrecht, 1991 | MR | Zbl | MR | Zbl

[20] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Hilger, Bristol, 1990 | MR | Zbl

[21] C. W. Onneweer, “On the definition of dyadic differentiation”, Appl. Anal., 9:4 (1979), 267–278 | DOI | MR | Zbl

[22] C. W. Onneweer, “Fractional differentiation and Lipschitz spaces on local fields”, Trans. Amer. Math. Soc, 258:1 (1980), 155–165 | DOI | MR | Zbl

[23] B. I. Golubov, “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Cer. matem., 65:3 (2001), 3–14 | MR | Zbl

[24] B. I. Golubov, “O modifitsirovannom silnom dvoichnom integrale i proizvodnoi”, Matem. sb., 193:4 (2002), 37–60 | MR | Zbl

[25] S. L Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 ; S. L. Sobolev, Cubature formulas and modern analysis: An introduction, Gordon and Breach, Montreux, 1992 | MR | Zbl | MR | Zbl