Cartan angular invariant and deformations of rank~1 symmetric spaces
Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 147-169

Voir la notice de l'article provenant de la source Math-Net.Ru

New geometric invariants in the quaternionic hyperbolic space and in the hyperbolic Cayley plane are introduced and studied. In these non-commutative and non-associative geometries they are a substitution for the Toledo invariant and the Cartan angular invariant well known in complex hyperbolic geometry. These new invariants are used for the investigation of quasi-Fuchsian deformations of quaternionic and octonionic hyperbolic manifolds. In particular, bendings are defined for such structures, which are the last two classes of locally symmetric structures of rank 1. Bibliography: 27 titles.
@article{SM_2007_198_2_a0,
     author = {B. N. Apanasov and I. Kim},
     title = {Cartan angular invariant and deformations of rank~1 symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {147--169},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_2_a0/}
}
TY  - JOUR
AU  - B. N. Apanasov
AU  - I. Kim
TI  - Cartan angular invariant and deformations of rank~1 symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 147
EP  - 169
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_2_a0/
LA  - en
ID  - SM_2007_198_2_a0
ER  - 
%0 Journal Article
%A B. N. Apanasov
%A I. Kim
%T Cartan angular invariant and deformations of rank~1 symmetric spaces
%J Sbornik. Mathematics
%D 2007
%P 147-169
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_2_a0/
%G en
%F SM_2007_198_2_a0
B. N. Apanasov; I. Kim. Cartan angular invariant and deformations of rank~1 symmetric spaces. Sbornik. Mathematics, Tome 198 (2007) no. 2, pp. 147-169. http://geodesic.mathdoc.fr/item/SM_2007_198_2_a0/